Bi-Polar Synaptic Behavior of Pt/SiOx:Ag/TiOx/p++- Si Memristor

Article Preview

Abstract:

Recently, by inserting a TiOx thin layer, we have fabricated a memristive device as Pt/SiOx:Ag/TiOx/p++-Si which features a better bi-polar gradually resistive switching under positive and negative electrical bias. Different synaptic functions including potentiation, depression, short-term potentiation and the transition from short-term memory (STM) to long-term memory (LTM) using suitably programmed voltage pulse have been implemented successfully in the memristive device. It is indicated that the Pt/SiOx:Ag/TiOx/p++-Si memristor can be used as a promising emulator for biological synapse, which could have great potential for brain-inspired neuromorphic computing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-109

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Mead: Proc. IEEE Vol. 78 (1990), p.1629.

Google Scholar

[2] B. Guo-quiang, P. Mu-ming: Nature Vol. 401 (1999), p.792.

Google Scholar

[3] Guo-qiang Bi and Mu-ming Poo: J. Neurosci Vol. 18 (1998), p.1.

Google Scholar

[4] V. Prusakova, C. Collini, L. Lunelli, L. Vanzetti, A. Chiappini, L. Lorenzelli, C. Pederzolli, A. Chiasera, M. Ferrari, S. Dirè: Mater. Des Vol. 105 (2016), p.359.

DOI: 10.1016/j.matdes.2016.05.086

Google Scholar

[5] W. I. Park, J. M. Yoon, M. Park, J. Lee, S. K. Kim, J. W. Jeong, K. Kim, H. Y. Jeong, S. Jeon, K. S. No, J. Y. Lee, Y. S. Jung: Nano Lett Vol. 12 (2012), p.1235.

DOI: 10.1021/nl203597d

Google Scholar

[6] H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, Z. Huo, L. Li, M. Liu: Adv. Funct. Mater Vol. 24 (2014), p.5772.

DOI: 10.1002/adfm.201470243

Google Scholar

[7] S. R. Nandakumar, M. Minvielle, S. Nagar, C. Dubourdieu, B. Rajendran: Nano Lett Vol. 16 (2016), p.1602.

Google Scholar

[8] Yingtao Li, Shibing Long, Manhong Zhang, Qi Liu, Lubing Shao, Sen Zhang, Yan Wang, Qingyun Zuo, Su Liu, Ming Liu: IEEE Electron Device Lett Vol. 31 (2010), p.117.

DOI: 10.1109/led.2009.2036276

Google Scholar

[9] Z.-M. Liao, C. Hou, H.-Z. Zhang, D.-S. Wang, D.-P. Yu, Appl. Phys. Lett Vol. 96 (2010), p.203109.

Google Scholar

[10] Z. Xu, Y. Bando, W. Wang, X. Bai, D. Golberg: ACS Nano Vol. 4 (2010) , p.2515.

Google Scholar

[11] L. Zhao, H. Y. Chen, S. C. Wu, Z. Jiang, S. Yu, T. H. Hou, H.-S. S. P. Wong, Y. Nishi: Nanoscale Vol. 6 (2014), p.5698.

Google Scholar

[12] W. Yi, S. E. Savel'Ev, G. Medeiros-Ribeiro, F. Miao, M. X. Zhang, J. J. Yang, A. M. Bratkovsky, R. S. Williams: Nat. Commun Vol. 7 (2016), p.11142.

Google Scholar

[13] S. Stathopoulos, A. Khiat, M. Trapatseli, S. Cortese, A. Serb, I. Valov, T. Prodromakis: Sci. Rep Vol. 7 (2017), p.17532.

DOI: 10.1038/s41598-017-17785-1

Google Scholar

[14] S. Kim, B.-G. Park: Appl. Phys. Lett Vol. 108 (2016), p.212103.

Google Scholar

[15] Y. M. Sun, C. Song, J. Yin, L. L. Qiao, R. Wang, Z. Y. Wang, X. Z. Chen, S. Q. Yin, M. S. Saleem, H. Q. Wu, F. Zeng, F. Pan: Appl. Phys. Lett Vol. 114 (2019), p.193502.

DOI: 10.1063/1.5098382

Google Scholar

[16] Z. Wang, M. Yin, T. Zhang, Y. Cai, Y. Wang, Y. Yang, R. Huang: Nanoscale Vol. 8 (2016), p.14015.

Google Scholar

[17] T. Wan, B. Qu, H. Du, X. Lin, Q. Lin, D.-W. Wang, C. Cazorla, S. Li, S. Liu, D. Chu: J. Colloid Interface Sci Vol. 512 (2018), p.767.

Google Scholar

[18] W. Liu, L. Gao, K. Xu, F. Ma, J. Vac. Sci. Technol. B: Nanotechnol. Microelectron. Mater. Process. Meas. Phenom Vol. 35 (2017), p.041001.

Google Scholar

[19] S. Z. Rahaman, S. Maikap, W. S. Chen, H. Y. Lee, F. T. Chen, T. C. Tien, M. J. Tsai: J. Appl. Phys Vol. 111 (2012), p.063710.

Google Scholar

[20] G. Zhou, L. Xiao, S. Zhang, B. Wu, X. Liu, A. Zhou: J. Alloys Compd Vol. 722 (2017), p.753.

Google Scholar

[21] Y.-F. Wang, Y.-C. Lin, I.-T. Wang, T.-P. Lin, T.-H. Hou: Sci. Rep Vol. 5 (2015), p.10150.

Google Scholar

[22] A. Guo, D. Li, W. Li, D. Gu, X. Jiang, Y. Jiang: Mater. Lett Vol. 185 (2016), p.5.

Google Scholar

[23] M. Xiao, K. P. Musselman, W. W. Duley, N. Y. Zhou: Nano-Micro Lett Vol. 9 (2017), p.15.

Google Scholar

[24] D. Xu, X. N. Shangguan, S. M. Wang, H. T. Cao, L. Y. Liang, H. L. Zhang, J. H. Gao, W. M. Long, J. R. Wang, F. Zhuge: AIP Adv Vol. 7 (2017).

Google Scholar

[25] R. Schmitt, J. Spring, R. Korobko, J. L. M. Rupp: ACS Nano Vol. 11 (2017), p.8881.

Google Scholar

[26] Y. C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng: Nano Lett Vol. 9 (2009), p.1636.

Google Scholar

[27] D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang: Nat. Nanotechnol Vol. 5 (2010), p.148.

Google Scholar

[28] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, M. Aono: Nat. Mater Vol. 10 (2011), p.591.

Google Scholar

[29] Z. Wang, M. Rao, R. Midya, S. Joshi, H. Jiang, P. Lin, W. Song, S. Asapu, Y. Zhuo, C. Li, H. Wu, Q. Xia, J. J. Yang: Adv. Funct. Mater Vol. 28 (2018), p.1.

DOI: 10.1002/adfm.201870036

Google Scholar