[1]
R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: a state-of-the-art review, Energy and Buildings. 43 (2011) 761–769.
DOI: 10.1016/j.enbuild.2010.12.012
Google Scholar
[2]
Y. Jiao, C. Wan, J. Li, Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable adsorbent, Materials and Design. 107 (2016) 26–32.
DOI: 10.1016/j.matdes.2016.06.015
Google Scholar
[3]
X. Fang, Z. Liu, M.F. Hsieh et al., Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors, ACS Nano 6 (2012) 4434–4444.
DOI: 10.1021/nn3011703
Google Scholar
[4]
C. Rutiser, S. Komarneni, R. Roy, Composite aerogels of silica and minerals of different morphologies, Materials Letters. 19 (1994) 221-224.
DOI: 10.1016/0167-577x(94)90160-0
Google Scholar
[5]
H.M. Kim, Y.J. Noh, J. Yu, S.Y. Kim, J.R. Youn, Silica aerogel/polyvinyl alcohol (PVA) insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution, Composites: Part A. 75 (2015) 39–45.
DOI: 10.1016/j.compositesa.2015.04.014
Google Scholar
[6]
L. Zuo, W. Fan, Y. Zhang, L. Zhang, W. Gao, Y. Huang, T. Liu, Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance, Composites Science and Technology. 139 (2017) 57-63.
DOI: 10.1016/j.compscitech.2016.12.008
Google Scholar
[7]
Y. Luo, Z. Li, W. Zhang, Rapid synthesis and characterization of ambient pressure dried monolithic silica aerogels in ethanol/water co-solvent system, Journal of Non-Crystalline Solids. 503–504 (2019) 214–223.
DOI: 10.1016/j.jnoncrysol.2018.09.049
Google Scholar
[8]
S.A. Lermontov, N.A. Sipyagina, V.K. Ivanov et al., Aerogels with hybrid organo-inorganic 3D network structure based on polyfluorinated diacids, Journal of Fluorine Chemistry. 207 (2018.) 67-71.
DOI: 10.1016/j.jfluchem.2018.01.006
Google Scholar
[9]
H. Omranpour, S. Motahari, Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature, Journal of Non-Crystalline Solids. 379 (2013) 7–11.
DOI: 10.1016/j.jnoncrysol.2013.07.025
Google Scholar
[10]
Y. Zhaoa, Y. Lib, R. Zhang, Silica aerogels having high flexibility and hydrophobicity prepared by solgel method, Ceramics International. 44 (2018) 21262–21268.
DOI: 10.1016/j.ceramint.2018.08.173
Google Scholar
[11]
S. Iswar, G.M.B.F. Snellings, S. Zhao etc Reinforced and superinsulating silica aerogel through in situ crosslinking with silane terminated prepolymers Acta Materialia. 147 (2018) 322-328.
DOI: 10.1016/j.actamat.2018.01.031
Google Scholar
[12]
P.B. Sarawadea, G.N. Shao, D.V. Quang, H.T. Kim, Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure, Applied Surface Science. 287 (2013) 84–90.
DOI: 10.1016/j.apsusc.2013.09.072
Google Scholar
[13]
Lermontov S.A., Malkova A.N., Sipyagina N.A. et al., Comparative analysis of the physicochemical characteristics of SiO2 aerogels prepared by drying under subcritical and supercritical conditions, Inorganic Materials. 53 №12 (2017) 1270-1278.
DOI: 10.1134/s002016851712007x
Google Scholar
[14]
Q. Fenga, K. Chena, D. Maa et al., Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying, Colloids and Surfaces A. 539 (2018) 399–406.
DOI: 10.1016/j.colsurfa.2017.12.025
Google Scholar
[15]
P. Maximiano, L. Durães, P.N. Simões, Organically-modified silica aerogels: A density functional theory study, The Journal of Supercritical Fluids. 147 (2019) 138–148.
DOI: 10.1016/j.supflu.2019.02.018
Google Scholar
[16]
R.B. Torres, J.P. Vareda, L. Durães et al., Effect of different silylation agents on the properties of ambient pressure dried and supercritically dried vinyl-modified silica aerogels, The Journal of Supercritical Fluids. 147 (2019) 81–89.
DOI: 10.1016/j.supflu.2019.02.010
Google Scholar
[17]
J. Wang, Y. Zhang, Y. Wei, X. Zhang, Fast and one-pot synthesis of silica aerogels via a quasi-solventexchange-free ambient pressure drying process. Microporous and Mesoporous Materials, 218 (2015) 192-198.
DOI: 10.1016/j.micromeso.2015.07.019
Google Scholar
[18]
V.A. Matveev, Y.O. Velyaev, D.V. Majorov Usovershenstvovanie metoda vydeleniya chistogo dioksida kremniya iz rastvorov ot serno-kislotnogo razlozheniya nefelina [Improvement of the method of separation of pure silicon dioxide from solutions of sulfuric acid decomposition of nepheline], Chemical technology. 14 №8 (2013) 453-459 (in Russian).
Google Scholar
[19]
Y.O. Velyaev, D.V. Majorov, K.V. Zaharov Usovershenstvovannie tekhnologii polucheniya alyumokremnievogo koagulyanta-flokulyanta na osnove serno-kislotnogo vskrytiya nefelina [Improvement of technology for alumosilicious coagulant-flocculant based on sulfuric acid decomposition of nephelite], Chemical technology. 12 №10 (2011) 614-620 (in Russian).
Google Scholar
[20]
Y.O. Velyaev, V.I. Zakharov, D.V. Maiorov, Improvement of the technology for the synthesis of an alumosilicate coagulant-flocculant based on nepheline, Glass Physics and Chemistry. 37 № 5 (2011) 568-571.
DOI: 10.1134/s1087659611050154
Google Scholar
[21]
S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity, second ed., Surface chemistry, Academic press, (1982).
Google Scholar