[1]
Z.M., Khoshhesab, M., Sarfaraz, M., and M.A., Asadabad, Preparation of ZnO nanostructures by chemical precipitation method. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41(7), (2011). 814-819.
DOI: 10.1080/15533174.2011.591308
Google Scholar
[2]
I. Udom, M.K Ram, E.K Stefanakos, A.F Hepp, and D.Y Goswami, One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Materials science in semiconductor processing, 16(6), (2013). 2070-2083.
DOI: 10.1016/j.mssp.2013.06.017
Google Scholar
[3]
J.Santhoshkumar, S.V Kumar, and S. Rajeshkumar, Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3(4), (2017). 459-465.
DOI: 10.1016/j.reffit.2017.05.001
Google Scholar
[4]
E.S. Mehr, M. Sorbiun, A. Ramazani, and S.T Fardood, Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. Journal of Materials Science: Materials in Electronics, 29(2),(2018). 1333-1340.
DOI: 10.1007/s10854-017-8039-3
Google Scholar
[5]
O.J Nava, P.A Luque, C.M Gómez-Gutiérrez, A.R Vilchis-Nestor, A. Castro-Beltrán, M.L Mota-González, and A. Olivas, Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis. Journal of Molecular Structure, 1134, (2017). 121-125.
DOI: 10.1016/j.molstruc.2016.12.069
Google Scholar
[6]
S.A. Khan, F.Noreen, S.Kanwal, A. Iqbal, and G. Hussain, Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Materials Science and Engineering: C, 82,(2018). 46-59.
DOI: 10.1016/j.msec.2017.08.071
Google Scholar
[7]
J. Jeevanandam, Y. San Chan, and Y.H. Ku, Aqueous Eucalyptus globulus leaf extract-mediated biosynthesis of MgO nanorods. Applied Biological Chemistry, 61(2), (2018). 197-208.
DOI: 10.1007/s13765-018-0347-7
Google Scholar
[8]
E.E.L. Tanner, K.Tschulik, R.Tahany, K.Jurkschat, C.Batchelor-McAuley,and R.G. Compton,Nanoparticle capping agent dynamics and electron transfer: polymer-gated oxidation of silver nanoparticles,, The Journal of Physical Chemistry C, 119, (2015). 18808–18815.
DOI: 10.1021/acs.jpcc.5b05789
Google Scholar
[9]
A. Naveed Ul Haq, A. Nadhman, I. Ullah, G. Mustafa, M. Yasinzai, I. Khan, Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. Journal of Nanomaterials, (2017).
DOI: 10.1155/2017/8510342
Google Scholar
[10]
R. M.Akhir, A. A. Fairuzi, and N. H.Ismail, American Institute of Physics Conference Series, 1674, (2015).
Google Scholar
[11]
R. M.Akhir, M.H. Norashikin, M.M. Mahat, N.N. Bonnia, International Journal of Engineering & Technology, 4.14, 488-492 (2018).
Google Scholar
[12]
K.H Kim, K.Utashiro, Y.Abe and M. Kawwamura, Growth of zinc oxide nanorods using various seed layer annealing temperatures and substrate materials. Int. J. Electrochem. Sci, 9, (2014). 2080-2089.
Google Scholar
[13]
M.F. Malek, M.H. Mamat, T. Soga, S.A. Rahman, S.A. Bakar, A.S. Ismail, and M.R. Mahmood, Thickness-controlled synthesis of vertically aligned c-axis oriented ZnO nanorod arrays: Effect of growth time via novel dual sonication sol–gel process. Japanese Journal of Applied Physics, (2015). 55(1S), 01AE15.
DOI: 10.7567/jjap.55.01ae15
Google Scholar
[14]
M. Qiu, Z. Ye, J. Lu, H. He, J. Huang, L. Zhu, B. Zhao, Growth and properties of ZnO nanorod and nanonails by thermal evaporation, 255 Applied Surface Science (2009) , 3972–3976.
DOI: 10.1016/j.apsusc.2008.10.093
Google Scholar
[15]
M.Chennimalai, J.Y.Do, M.Kang, and T.S. Senthil, A facile green approach of ZnO NRs synthesized via Ricinus communis L. leaf extract for Biological activities. Materials Science and Engineering: C, (2019). 109844.
DOI: 10.1016/j.msec.2019.109844
Google Scholar
[16]
N. Zikalala, K. Matshetshe, S. Parani, and O.S. Oluwafemi, Biosynthesis protocols for colloidal metal oxide nanoparticles. Nano-Structures & Nano-Objects, 16, (2018). 288-299.
DOI: 10.1016/j.nanoso.2018.07.010
Google Scholar
[17]
K.L. Foo, U. Hashim, K. Muhammad, C.H. Voon, Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale research letters, 9(1), (2014). 429.
DOI: 10.1186/1556-276x-9-429
Google Scholar
[18]
X. Li, X. Chen, Z. Yi, Z.Zhou, Y. Tang, and Y. Yi, Fabriction of ZnO nanorods with strong UV absorption and different hydrophobicity on foamed nickel under different hydrothermal conditions. Micromachines, 10(3), (2019). 164.
DOI: 10.3390/mi10030164
Google Scholar
[19]
A.N. Afaah, A. Aziz, N.A.M. Asib, R. Mohamed, M.H. Mamat, M.M. Rusop, and Z.Khusaimi, (2014). The Growth of ZnO nanoparticles by solution-immersion method on various types of seeded template. In Journal of Nano Research (Vol. 26, pp.39-44). Trans Tech Publications.
DOI: 10.4028/www.scientific.net/jnanor.26.39
Google Scholar