The Effect of Doping on the Structure of Zinc Oxide Obtained by Atomic Layer Deposition

Article Preview

Abstract:

Zinc oxide (ZnO) is an interesting inexpensive transparent conductive oxide for use as a transport layer in multilayer solar cells. We present the results of a study of the effect of aluminum doping on the structure of 50-65 nm thin films of zinc oxide obtained by atomic layer deposition (ALD) on different substrates (glass, sapphire with a-plane and c-plane orientations). Analysis of thin films by IR spectra and X-ray diffraction showed the effect of doping on the crystallographic texture of films grown by the ALD method by comparing substrates of simple glass, c-plane Al2O3 and a-plane Al2O3. We found that when doping zinc oxide, the orientation of the substrate plays a substantial role, which affects the mechanism of interaction of zinc oxide with a doping agent, leading to changes in the structure and properties of ZnO due to the interaction between ZnO molecules and water to form a Zn-O-H bond. Doping with aluminum leads to a strain stress, resulting in distortion of the structure and a decrease in the concentration of oxygen vacancies. This is turn facilitates the flow of water molecules into the interlayer space and an increase in the density of the positive charge on the metal cation, which leads to an increase in the coordination number, i.e. to an increase in the number of hydroxyl groups.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-336

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.S. Ginley, H. Hosono, D.C. Paine, Handbook of Transparent Conductors, Springer, New York, (2010).

Google Scholar

[2] Ü. Özgür, D. Hofstetter, H. Morkoc, ZnO devices and applications: a review of current status and future prospects, Proc. IEEE 98 (2010) 1255–1268. Vol. 98, No. 7, July 2010. 10.1109/JPROC.2010.2044550.

DOI: 10.1109/jproc.2010.2044550

Google Scholar

[3] K. Ellmer, A. Bikowski, Intrinsic and extrinsic doping of ZnO and ZnO alloys, J. Phys.D: Appl. Phys. 49 (2016) 413002.

DOI: 10.1088/0022-3727/49/41/413002

Google Scholar

[4] T. Minami, H. Sato, H. Nanto, S. Takata, Group III impurity doped zinc oxide thin films prepared by RF magnetron sputtering, Jpn. J. Appl. Phys. 24 (1985) p. L781–L784.

DOI: 10.1143/jjap.24.l781

Google Scholar

[5] Valenti, S. Benedetti, A. di Bona, V. Lollobrigida, A. Perucchi, P. Di Pietro, S.Lupi, S. Valeri, P. Torelli, Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range,J. Appl. Phys. 118 (2015) p.165304.

DOI: 10.1063/1.4934512

Google Scholar

[6] E. Ochoa-Martínez, E. Navarrete-Astorga, J.R. Ramos-Barrado, M. Gabás, Evolution of Al:ZnO optical response as a function of doping level, Appl. Surf. Sci. 421 (2017) pp.680-686.

DOI: 10.1016/j.apsusc.2016.10.103

Google Scholar

[7] A. Bikowski, M. Rengachari, M. Nie, N. Wanderka, P. Stender, G. Schmitz, K. Ellmer, Research Update: Inhomogeneous aluminium dopant distribution in magnetron sputtered ZnO:Al thin films and its influence on their electrical properties, Appl. Phys. Lett. Mater. 3 (2015) p.060701.

DOI: 10.1063/1.4922152

Google Scholar

[8] W. H. Huang, S. J. Sun, J. W. Chiou, H. Chou, T. S. Chan, H.-J. Lin, K. Kumar, J.-H. Guo, Electronic structure of Al-doped ZnO transparent conductive thin films studied by x-ray absorption and emission spectroscopies, J. Appl. Phys. 110 (2011) p.103705.

DOI: 10.1063/1.3662202

Google Scholar

[9] J. Wang, R. Chen, L. Xiang, S. Komarneni, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review, Ceram. Int. 44 (2018) p.7357–7377.

DOI: 10.1016/j.ceramint.2018.02.013

Google Scholar

[10] Susanta Bera, Moumita Pal, Saswati Sarkar, Sunirmal Jana. Dependence of precursor composition on patterning and morphology of sol–gel soft lithography based zinc zirconium oxide thin films. Applied Surface Science 273 (2013) p.39– 48.

DOI: 10.1016/j.apsusc.2013.01.079

Google Scholar

[11] B. M. Keyes, L. M. Gedvilas, X. Li and T. J. Coutts, Infrared Spectroscopy of Polycrystalline ZnO and ZnO:N Thin Films,, Journal of Crystal Growth, Vol. 281, No. 2-4, 2005, pp.297-302.

DOI: 10.1016/j.jcrysgro.2005.04.053

Google Scholar

[12] Davydov A. Molecular spectroscopy of oxide catalyst surfaces. Chichester: John Wiley &Sons Ltd., 2003, p.641.

Google Scholar

[13] Yamini S. Avadhut, Johannes Weber, Elin Hammarberg, Claus Feldmannb and J. Schmedt. Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy. Phys. Chem. Chem. Phys., 2012, 14, 11610–11625.

DOI: 10.1039/c2cp41139c

Google Scholar

[14] Gurpreet Kaurn, AnirbanMitra K.L. Yadav. Pulsed laser deposited Al-doped ZnO thin films for optical applications. Progress in Natural Science: Materials International 25(2015) p.12–21.

DOI: 10.1016/j.pnsc.2015.01.012

Google Scholar