Modified Composition for Fixing Sandy Soils

Article Preview

Abstract:

The possibility of using a modified composition based on slag Portland cement with the addition of stabilized finely dispersed slag in geotechnical construction and in landscape design is considered. The physical, mechanical and structural characteristics of samples hardening in normal conditions and under the influence of aggressive media were studied. It is established that the compressive and flexural strength of the modified samples is higher than that of the control sample. When hardening in normal conditions, on the first day, the flexural strength of modified specimens increased by 59%, at the grade age by 51%, compressive strength - 2.3 times and by 83%, respectively. When hardening in aggressive media, an increase in the strength of the modified specimens is also observed (flexural by 35–58%, compressive by 7–15%). This is explained by the fact that stabilized slag particles in a hardening system perform two functions: they are centers of directional crystallization for nucleation and growth of newgrowths, and full participants in the hydration process, binding calcium hydroxide to crystallohydrate compounds, thereby preventing the formation of ettringite when the concrete structure is exposed to aggressive media.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.P. Gorbunova, A.R. Gil'manova, Landshaftnoe obustrojstvo uchastkov na sklonah i ih ukreplenie, Science Time. 1 (37) (2017) 119-125.

Google Scholar

[2] K.T. Satkynaliev, S.N. Akylbekov, SH.B. Makenov, ZH.CH. Minkishiev, Ponyatiya i konstrukcii podpornyh stenok, Vestnik KGUSTA. 4 (58) (2017) 137-143.

Google Scholar

[3] S.M. Vasil'ev, E.A. Akbasheva, Protivoopolznevye gibkie podpornye sooruzheniya i ocenka konstruktivnyh reshenij, Sovremennye problemy nauki i obrazovaniya. 1-1 (2015) 418-423.

Google Scholar

[4] T.V. SHeina, E.A. Avdeeva, Gabionnye i armogruntovye konstrukcii, Gradostroitel'stvo i arhitektura. 7 (3 (28)) (2017) 50-56.

Google Scholar

[5] W.G. Fu, The application of composite soil nailing wall in China, 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability. (2015) 2192-2195.

Google Scholar

[6] Y. Taira, K. Furuichi, T. Ichinomiya, Study of earth retaining composite wall structure with perfobond shear connectors, fib Symposium PRAGUE 2011: Concrete Engineering for Excellence and Efficiency, Proceedings. 2 (2011) 1213-1216.

DOI: 10.2208/jsceja.66.547

Google Scholar

[7] K. Furuichi, T. Ichinomiya, Y. Taira, H. Fujii, Study of earth retaining composite wall structure with perfobond strip, Doboku Gakkai Ronbunshuu A. 66 (3) (2010) 547-560.

DOI: 10.2208/jsceja.66.547

Google Scholar

[8] M.A. Enaldieva, Innovacionnye tekhnologii zakrepleniya sklonov gornyh i predgornyh landshaftov, Nauchnyj zhurnal Rossijskogo NII problem melioracii. 1 (33) (2019) 109-118.

Google Scholar

[9] L.F. Kazanskaya, Yu.I. Makarov, D.S. Grigor'ev, Prochnost' i stojkost' mnogokomponentnyh mineral'nyh vyazhushchih na osnove tekhnogennogo syr'ya, Izvestiya Peterburgskogo universiteta putej soobshcheniya. 1 (38) (2014) 75-81.

Google Scholar

[10] G.S. Royak, I.V. Granovskaya, SHlakoportlandcement dlya predotvrashcheniya korrozii betona, Cement i ego primenenie. 3 (2011) 104-106.

Google Scholar

[11] M.S. Garkavi, E.A. Troshkina, Vliyanie modificirovannyh lignosul'fonatov na tverdenie i dolgovechnost' betona na osnove shlakoportlandcemeta, Nauchnyj vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Stroitel'stvo i arhitektura. 3 (11) (2008) 50-55.

Google Scholar

[12] W. Lang, Z. Liping, T. Jian, Hydration Kinetics Model of Slag-blended Cement System, IOP Conference Series: Earth and Environmental Science, 242 (6) (2019) 062074.

DOI: 10.1088/1755-1315/242/6/062074

Google Scholar

[13] A.N. Grishin, A.I. Panchenko, I.Ya. Kharchenko, M.I. Bazhenov, Finely dispersed composite binder for soil consolidation by the injection method, Vestnik MGSU. 12 (11) (2017) 1289-1298.

DOI: 10.22227/1997-0935.2017.11.1289-1298

Google Scholar

[14] S.A. Krivchun, E.A. Krivchun, M.I. Bazhenov, V.A. Alekseev, A.I. Kharchenko, I.Ya. Kharchenko, Structure and properties of soil concrete masses based on nano-modified microcements, Housing construction. 9 (2016) 55-58.

Google Scholar

[15] S. Samchenko, I Kozlova, O. Zemskova, D. Zamelin, A. Pepelyaeva, Complex Method of Stabilizing Slag Suspension, EMMFT-2018 2018: International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. Advances in Intelligent Systems and Computing. 983 (2019) 817-827.

DOI: 10.1007/978-3-030-19868-8_80

Google Scholar

[16] S. Samchenko, I Kozlova, O. Zemskova, T. Nikiporova., S.Kosarev, Method of Modifying Portland Slag Cement with Ultrafine Component, EMMFT-2018 2018: International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. Advances in Intelligent Systems and Computing. 983 (2019) 807-816.

DOI: 10.1007/978-3-030-19868-8_79

Google Scholar

[17] Yu. Bazhenov, I. Kozlova1, K. Nechaev, A. Kryuchkova, The use of finely ground slag in portland cement with mineral additives, E3S Web of Conferences. 91 (02044) (2019).

DOI: 10.1051/e3sconf/20199102044

Google Scholar

[18] O.M. Smirnova, D.A. Potyomkin, Influence of ground granulated blast furnace slag properties on the superplasticizers effect, International Journal of Civil Engineering and Technology (IJCIET). 9 (7) (2018) 874–880.

Google Scholar

[19] O.M. Smirnova, Rheologically active microfillers for precast concrete, International Journal of Civil Engineering and Technology. 8(9) ( 2018) 1724-1732.

Google Scholar

[20] O. Smirnova, Concrete mixtures with high-workability for ballastless slab tracks, Journal of King Saud University-Engineering Sciences. 29(4) (2017) 381-387.

DOI: 10.1016/j.jksues.2017.06.004

Google Scholar

[21] O.M. Smirnova, Obtaining the High-performance Concrete for Railway Sleepers in Russia, Procedia Engineering. 172 (2017) 1039-1043.

DOI: 10.1016/j.proeng.2017.02.158

Google Scholar

[22] S.V. Samchenko, O.V. Zemskova, I.V. Kozlova, Ultradisperse slag suspensions aggregative and sedimentative stability, MATEC Web of Conferences. 106 (03017) (2017).

DOI: 10.1051/matecconf/201710603017

Google Scholar

[23] S. Samchenko I. Kozlova, O. Zemskova, E. Baskakova, Influence of optimal conditions of ultrasonic dispersion on the stability of suspensions of finely ground slags, MATEC Web of Conferences. 265(01017) (2019). https://doi.org/10.1051/matecconf/201926501017.

DOI: 10.1051/matecconf/201926501017

Google Scholar