[1]
V.P. Gorbunova, A.R. Gil'manova, Landshaftnoe obustrojstvo uchastkov na sklonah i ih ukreplenie, Science Time. 1 (37) (2017) 119-125.
Google Scholar
[2]
K.T. Satkynaliev, S.N. Akylbekov, SH.B. Makenov, ZH.CH. Minkishiev, Ponyatiya i konstrukcii podpornyh stenok, Vestnik KGUSTA. 4 (58) (2017) 137-143.
Google Scholar
[3]
S.M. Vasil'ev, E.A. Akbasheva, Protivoopolznevye gibkie podpornye sooruzheniya i ocenka konstruktivnyh reshenij, Sovremennye problemy nauki i obrazovaniya. 1-1 (2015) 418-423.
Google Scholar
[4]
T.V. SHeina, E.A. Avdeeva, Gabionnye i armogruntovye konstrukcii, Gradostroitel'stvo i arhitektura. 7 (3 (28)) (2017) 50-56.
Google Scholar
[5]
W.G. Fu, The application of composite soil nailing wall in China, 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability. (2015) 2192-2195.
Google Scholar
[6]
Y. Taira, K. Furuichi, T. Ichinomiya, Study of earth retaining composite wall structure with perfobond shear connectors, fib Symposium PRAGUE 2011: Concrete Engineering for Excellence and Efficiency, Proceedings. 2 (2011) 1213-1216.
DOI: 10.2208/jsceja.66.547
Google Scholar
[7]
K. Furuichi, T. Ichinomiya, Y. Taira, H. Fujii, Study of earth retaining composite wall structure with perfobond strip, Doboku Gakkai Ronbunshuu A. 66 (3) (2010) 547-560.
DOI: 10.2208/jsceja.66.547
Google Scholar
[8]
M.A. Enaldieva, Innovacionnye tekhnologii zakrepleniya sklonov gornyh i predgornyh landshaftov, Nauchnyj zhurnal Rossijskogo NII problem melioracii. 1 (33) (2019) 109-118.
Google Scholar
[9]
L.F. Kazanskaya, Yu.I. Makarov, D.S. Grigor'ev, Prochnost' i stojkost' mnogokomponentnyh mineral'nyh vyazhushchih na osnove tekhnogennogo syr'ya, Izvestiya Peterburgskogo universiteta putej soobshcheniya. 1 (38) (2014) 75-81.
Google Scholar
[10]
G.S. Royak, I.V. Granovskaya, SHlakoportlandcement dlya predotvrashcheniya korrozii betona, Cement i ego primenenie. 3 (2011) 104-106.
Google Scholar
[11]
M.S. Garkavi, E.A. Troshkina, Vliyanie modificirovannyh lignosul'fonatov na tverdenie i dolgovechnost' betona na osnove shlakoportlandcemeta, Nauchnyj vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Stroitel'stvo i arhitektura. 3 (11) (2008) 50-55.
Google Scholar
[12]
W. Lang, Z. Liping, T. Jian, Hydration Kinetics Model of Slag-blended Cement System, IOP Conference Series: Earth and Environmental Science, 242 (6) (2019) 062074.
DOI: 10.1088/1755-1315/242/6/062074
Google Scholar
[13]
A.N. Grishin, A.I. Panchenko, I.Ya. Kharchenko, M.I. Bazhenov, Finely dispersed composite binder for soil consolidation by the injection method, Vestnik MGSU. 12 (11) (2017) 1289-1298.
DOI: 10.22227/1997-0935.2017.11.1289-1298
Google Scholar
[14]
S.A. Krivchun, E.A. Krivchun, M.I. Bazhenov, V.A. Alekseev, A.I. Kharchenko, I.Ya. Kharchenko, Structure and properties of soil concrete masses based on nano-modified microcements, Housing construction. 9 (2016) 55-58.
Google Scholar
[15]
S. Samchenko, I Kozlova, O. Zemskova, D. Zamelin, A. Pepelyaeva, Complex Method of Stabilizing Slag Suspension, EMMFT-2018 2018: International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. Advances in Intelligent Systems and Computing. 983 (2019) 817-827.
DOI: 10.1007/978-3-030-19868-8_80
Google Scholar
[16]
S. Samchenko, I Kozlova, O. Zemskova, T. Nikiporova., S.Kosarev, Method of Modifying Portland Slag Cement with Ultrafine Component, EMMFT-2018 2018: International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. Advances in Intelligent Systems and Computing. 983 (2019) 807-816.
DOI: 10.1007/978-3-030-19868-8_79
Google Scholar
[17]
Yu. Bazhenov, I. Kozlova1, K. Nechaev, A. Kryuchkova, The use of finely ground slag in portland cement with mineral additives, E3S Web of Conferences. 91 (02044) (2019).
DOI: 10.1051/e3sconf/20199102044
Google Scholar
[18]
O.M. Smirnova, D.A. Potyomkin, Influence of ground granulated blast furnace slag properties on the superplasticizers effect, International Journal of Civil Engineering and Technology (IJCIET). 9 (7) (2018) 874–880.
Google Scholar
[19]
O.M. Smirnova, Rheologically active microfillers for precast concrete, International Journal of Civil Engineering and Technology. 8(9) ( 2018) 1724-1732.
Google Scholar
[20]
O. Smirnova, Concrete mixtures with high-workability for ballastless slab tracks, Journal of King Saud University-Engineering Sciences. 29(4) (2017) 381-387.
DOI: 10.1016/j.jksues.2017.06.004
Google Scholar
[21]
O.M. Smirnova, Obtaining the High-performance Concrete for Railway Sleepers in Russia, Procedia Engineering. 172 (2017) 1039-1043.
DOI: 10.1016/j.proeng.2017.02.158
Google Scholar
[22]
S.V. Samchenko, O.V. Zemskova, I.V. Kozlova, Ultradisperse slag suspensions aggregative and sedimentative stability, MATEC Web of Conferences. 106 (03017) (2017).
DOI: 10.1051/matecconf/201710603017
Google Scholar
[23]
S. Samchenko I. Kozlova, O. Zemskova, E. Baskakova, Influence of optimal conditions of ultrasonic dispersion on the stability of suspensions of finely ground slags, MATEC Web of Conferences. 265(01017) (2019). https://doi.org/10.1051/matecconf/201926501017.
DOI: 10.1051/matecconf/201926501017
Google Scholar