The Method of Estimating the Durability of Structural Materials from the Effects of Cyclic Loads

Article Preview

Abstract:

The article deals with the technique of predicting the durability of structural materials under the influence of low-cycle loads at different loading trajectories in a two-dimensional stress space at a flat stress-strain state. The use of this technique significantly reduces the number of time-consuming and expensive experiments while maintaining the quality of the results. The technique is based on the method of processing acoustic emission signals when the acoustic signals are allocated with a fractal dimension of the attractor 1≤ D2att ≤6 on a steady-state cyclic creep that reflects the accumulation of hazardous defects in the structural material. To predict the durability at a certain type of stress-strain state, but at any form of a cycle of low-cycle loading by the proposed method, it is enough to have the results of experiments at the maximum intensity of stresses, the minimum intensity of stresses and the saw-tooth form of the cycle of stress intensity change.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-183

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.N. Seriesnow, L.N. Stepanova, V.V. Murav'ev and others, Under the editorship of L.N. Stepanova, V.V. Muraviov, Diagnostics of transport objects by acoustic emission, M.: mechanical engineering, mechanical engineering, Flight, 2004, 368 p.

Google Scholar

[2] N.A. Semashko, V.I. Shport, B.N. Marin and others, Under the editorship of prof. A. N Semashko, Acoustic emission in experimental materials science, M.: mechanical engineering, 2002, 240 p.

Google Scholar

[3] O.E. Sysoev, Determination of limit States of structural materials using nonlinear dynamics methods: monograph, Vladivostok: Dalnauka, 2013, 150 p.

Google Scholar

[4] O.E. Sysoev, D.G. Kolykhalov, E.A. Kuznetsov, and S.V. Belykh, Forecasting Durability and Cyclic Strength of Aluminum Alloy AA2219 Using Fractal Analysis of Acoustic Emission,, in IV Sino-Russian ASRTU Symposium on Advanced Materials and Materials and Processing Technology, KnE Materials Science, pages 161–167. DOI 10.18502/kms.v1i1.579, (2016).

DOI: 10.18502/kms.v1i1.579

Google Scholar

[5] O.E. Sysoev, S.V. Bilenko, Identification of processes of change in the structure of structural materials on the basis of fractal analysis of acoustic emission scientific notes of KnASU. 3 (2012) 107-115.

Google Scholar

[6] O.E. Sysoyev, E.A. Kuznetsov, B.N. Marin, Regularities of Changes in the Fractal Dimension of Acoustic Emission Signals in the Stages Close to the Destruction of Structural Materials When Exposed to Low-Cycle Loaded, ICTTE 2018, ISBN- 978-1-4503-6604-5, 213-217.

DOI: 10.1145/3321619.3321685

Google Scholar

[7] O.E. Sysoev, E.A. Kuznetsov, V.V. Kurenei, Modern test benches for research of structural materials under low-cycle loads at a complex stress state taking into account the acoustic emission parameters, scientific notes of KnASTU. 1 (2012) 106-112.

Google Scholar

[8] O.E. Sysoev, New Ideas for Monitoring the Steel Structures of Buildinbgs and Surface facilities in the Extreme Limit State, journal of shenyang jianzhu university natural science. 27, 6 (2011) 1099-1102. ISSN 2095-1922.

Google Scholar

[9] I Endler, A. Leonhardt, H.J. Scheibe, R Born, Interlayers for diamond deposition on tool materials, Diamond Relat. Mater. 5 (1996) 299–303.

DOI: 10.1016/0925-9635(95)00352-5

Google Scholar

[10] L.J. De Oliveira, S.C. Cabral, M Filgueira, Study hot pressed Fe-diamond composites graphitization, Int. J. Refract. Met. Hard Mater. 35 (2012) 228–234.

DOI: 10.1016/j.ijrmhm.2012.03.015

Google Scholar

[11] J. Hell, M. Chirtoc, C. Eisenmenger-Sittner, H. Hutter, N. Kornfeind, P. Kijamnajsuk, M. Kitzmantel, E. Neubauer, K Zellhofer, Characterisation of sputter deposited niobium and boron interlayer in the copper–diamond system, Surf. Coat. Technol. 208 (2012) 24–31.

DOI: 10.1016/j.surfcoat.2012.07.068

Google Scholar

[12] W.Q. Qiu, Z.W. Liu, L.X. He, D.C. Zeng, Y.-W. Mai. Improved interfacial adhesion between diamond film and copper substrate using a Cu(Cr)–diamond composite interlayer, Mater. Lett. 81 (2012) 155–157.

DOI: 10.1016/j.matlet.2012.05.015

Google Scholar

[13] Zh. Ma, J Wang, Q Wu, Ch Wang, Preparation of flat adherent diamond films on thin copper substrates using a nickel interlayer, Surf. Coat. Technol. 155 (2002) 96–101.

DOI: 10.1016/s0257-8972(02)00038-5

Google Scholar

[14] Y. Huang, H. Xiao, Zh. Ma, J. Wang, Gao. Pengzhao, Effects of Cu and Cu. Ti interlayer on adhesion of diamond film, Surf. Coat. Technol. 202 (2007) 180–184.

DOI: 10.1016/j.surfcoat.2007.05.014

Google Scholar

[15] Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Mater. Sci. Eng. A. 483 (2008)148–152.

DOI: 10.1016/j.msea.2006.10.184

Google Scholar

[16] А.A. Zaitsev, V.V. Kurbatkina, E.A. Levashov, Features of the effect of nanodispersed additives on the sintering process and properties of powdered cobalt alloys, Russ. J. Non-Ferr. Met. 49 (2008) 120–126.

DOI: 10.3103/s1067821208020107

Google Scholar

[17] А.A. Zaitsev, V.V. Kurbatkina, E.A. Levashov, Features of the influence of nanodispersed additions on the process of and properties of the Fe–Co–Cu–Sn sintered alloy, Russ. J. Non-Ferr. Met. 49 (2008) 414–419.

DOI: 10.3103/s1067821208050180

Google Scholar

[18] E.A. Levashov, V.V. Kurbatkina, A.A. Zaytsev, Improved mechanical and tribological properties of metal-matrix composites dispersion-strengthened by nanoparticles, Materials. 3 (2010) 97–109.

DOI: 10.3390/ma3010097

Google Scholar

[19] A.A. Zaitsev, D.A. Sidorenko, E.A. Levashov, V.V. Kurbatkina, V.A. Andreev, S.I. Rupasov, P.V. Sevast'yanov, Diamond tolls in metal bonds dispersion-strengthened with nanosized particles for cutting highly reinforced concrete, J. Superhard Mater. 34 (2010) 423–431.

DOI: 10.3103/s1063457610060080

Google Scholar

[20] S.I. Bohodukhiv, Materialovedenie: uchebnik, М.: Machinostroenie, (2015).

Google Scholar

[21] N. Naseri Joda, & F. Rashchi, Recovery of ultra fine grained silver and copper from PC board scraps, Separation and Purification Technology. 92(2012) 36–42.

DOI: 10.1016/j.seppur.2012.03.022

Google Scholar

[22] V.M. Lipkin, M.S. Lipkin, & V.I. Lachin, The Mechanism of Water-Soluble Polymer Аdditives and Parameters of the Pulse Electrolysis Effect on the Size Distribution of the Electrolytic Copper Powder, Materials Science Forum. 870(2016) 636–641.

DOI: 10.4028/www.scientific.net/msf.870.636

Google Scholar

[23] M.S. Lipkin, V.M. Lipkin, A.A. Naumenko, A.S. Misharev, F.R. Tulaeva, E.A. Rybalko, N.A. Lytkin, V.G. Shishka, A.N. Bogdanchenko, Synthesis of Metal Nano-Powders in Nonstationary Electrolysis, in: Proceeding of ECS Meeting Abstracts Cancun Mexico: Emerging nanomaterials and devices. (2014). URL: http://ma.ecsdl.org/content/MA201402/38/1891.abstract?sid=4f135d9c-a263-4b25-9573-fd5d278fcc04.

DOI: 10.1149/ma2014-02/38/1891

Google Scholar

[24] R.K. Nekouie, F. Rashchi, N.N. Joda, Effect of organic additives on synthesis of copper nano powders by pulsing electrolysis, Powder. Technology. 237 (2013) 554-561.

DOI: 10.1016/j.powtec.2012.12.046

Google Scholar

[25] M.G. Pavlović, J.L. Pavlović, I.D. Doroslovački, N.D. Nikolić, The effect of benzoic acid on the corrosion and stabilisation of electrodeposited copper powder, Hydrometallurgy. 73 (2004) 155-162.

DOI: 10.1016/j.hydromet.2003.08.005

Google Scholar

[26] D. B. Solovev, A. Ya. Kardava, Analyzing Upcoming Trends in Development of Current Transducers for Automatic Equipment and Relay Protection: A Review. International Review of Electrical Engineering (IREE). 10(3) (2015) 381-389. [Online]. Available: http://dx.doi.org/10.15866/iree.v10i3.6253.

DOI: 10.15866/iree.v10i3.6253

Google Scholar

[27] D.J. Wilson, R.L. Williams, R.C. Pond, Plasma modifications of PTFE surfaces, Part I, Surfaces immediately following plasma treatment, Surf. Interface Analysis. 31 (2001) 385−396.

DOI: 10.1002/sia.1065

Google Scholar

[28] K.A. Vijayalakshmi, M. Makala, C.P. Yoganand, N. Pandiyaraj, Studeis on modification of surface properties in polycarbonate (PC) film induced by DC glow discharge plasma, International Journal of Polymer Science, (2011).

DOI: 10.1155/2011/426057

Google Scholar

[29] V.S. Nagorny, N.S. Pshchelko, Experimental study of ways to increase the adhesion of conducting particles to dielectric substrates, Scientific and technical statements of St. Petersburg state Polytechnic University, Informatics. Telecommunications. Management. 3(80) (2009) 185-190.

Google Scholar

[30] L.P. Baranovskaya, N.O. Chernenko, Dependence of coating adhesion on roughness, Actual problems of aviation and cosmonautics. 2, 13 (2017) 760-762.

Google Scholar

[31] M.I. Bessonov, M.M. Koton, V. Kudryavtsev, L.A. Laius, Polyimides - class of heat-resistant polymers, L.: Science, (1983).

Google Scholar

[32] Polyimides: Fundamentals and Applications, Eds. Ghosh M.K., Mittal K.L. N.Y.: Marcel Dekker, (1996).

Google Scholar