[1]
Jianjun Wang, Shangyu Yang, Chengwen Xue, et al. Strain design method for casing strings in heavy oil thermal recovery well [J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(1): 150-155.
Google Scholar
[2]
Laiju Han, Jianghong Jia, Zhenlai Yan. A casing design method based on strain variations for wells in thermal recovery processes [J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(3): 68-72.
Google Scholar
[3]
Long Yu. Study on the creep - fatigue interaction of high - NbTiAl alloys [D]; University of Science and Technology Beijing, (2016).
Google Scholar
[4]
Tiecheng Yang. Investigation of fatigue creep behavior and lief estimation of pressure vessel steel 1.25Cr0.5Mo at high temperature [D]; Zhejiang University, (2006).
Google Scholar
[5]
Cerri E, Evangelista E, Spigarelli S, et al. Evolution of microstructure in a modified 9Cr–1Mo steel during short term creep [J]. Materials Science & Engineering A, 1998, 245(2): 285-292.
DOI: 10.1016/s0921-5093(97)00717-x
Google Scholar
[6]
Bouvard J L, Chaboche J L, Feyel F, et al. A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys [J]. International Journal of Fatigue, 2009, 31(5): 868-879.
DOI: 10.1016/j.ijfatigue.2008.11.002
Google Scholar
[7]
Fan Z, Chen X, Chen L, et al. Fatigue–creep behavior of 1.25Cr0.5Mo steel at high temperature and its life prediction [J]. International Journal of Fatigue, 2007, 29(6): 1174-83.
DOI: 10.1016/j.ijfatigue.2006.07.008
Google Scholar
[8]
Hong J W, Nam S W, Rie K T. A model for life prediction in low-cycle fatigue with hold time [J]. Journal of Materials Science, 1985, 20(10): 3763-3770.
DOI: 10.1007/bf01113785
Google Scholar
[9]
Wei W, Feng Y, Han L, et al. Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures [J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2018, 734: 20-26.
DOI: 10.1016/j.msea.2018.07.084
Google Scholar
[10]
Wei W, Feng Y, Han L, et al. High-Temperature Low-Cycle Fatigue Behavior of HS80H Ferritic–Martensitic Steel Under Dynamic Strain Aging [J]. Journal of Materials Engineering and Performance, 2018, 27(12): 6629-6635.
DOI: 10.1007/s11665-018-3726-7
Google Scholar
[11]
Talemi R H, Chhith S, Waele W D. Experimental and numerical study on effect of forming process on low‐cycle fatigue behaviour of high‐strength steel [J]. Fatigue & Fracture of Engineering Materials & Structures, (2017).
DOI: 10.1111/ffe.12625
Google Scholar
[12]
Lei H, Akebono H, Kato M, et al. Fatigue life prediction method for AISI 316 stainless steel under variable-amplitude loading considering low-amplitude loading below the endurance limit in the ultrahigh cycle regime [J]. International Journal of Fatigue, 2017, 101: 18-26.
DOI: 10.1016/j.ijfatigue.2017.04.006
Google Scholar
[13]
Brnic J, Canadija M, Turkalj G, et al. Structural Steel ASTM A709-Behavior at Uniaxial Tests Conducted at Lowered and Elevated Temperatures, Short-Time Creep Response, and Fracture Toughness Calculation [J]. Journal of Engineering Mechanics, 2010, 136(9): 1083-1089.
DOI: 10.1061/(asce)em.1943-7889.0000152
Google Scholar
[14]
Goll W, Spilker H, Toscano E H. Short-time creep and rupture tests on high burnup fuel rod cladding [J]. Journal of Nuclear Materials, 2001, 289(3): 247-253.
DOI: 10.1016/s0022-3115(01)00438-x
Google Scholar
[15]
Lihong Han, Bin Xie, Hang Wang, et al. Strain-based design of casing strings for serving cyclic steam stimulation thermal well [J]. Steel pipe, 2016, 45(3): 11-18.
Google Scholar
[16]
Kassner M E, Smith K. Low temperature creep plasticity [J]. Journal of Materials Research & Technology, 2014, 3(3): 280-288.
Google Scholar
[17]
Kaiser T M V. Post-Yield Material Characterization for Strain-Based Design[J]. Spe Journal, 2009, 14(1): 128-134.
DOI: 10.2118/97730-pa
Google Scholar
[18]
Jing Li, Chengyan Lin, Shaochun Yang, et al. Analysis on mechanism of casing damage and strength design for heavy oil wells[J].Oil Field Equipment,2009,38(01):9-13.
Google Scholar
[19]
Nowinka J, Kaiser T M V, Lepper B. Strain-Based Design of Tubulars for Extreme-Service Wells [J]. Spe Drilling & Completion, 2008, 23(4): 353-360.
DOI: 10.2118/105717-pa
Google Scholar
[20]
Niesłony A, Dsoki C E, Kaufmann H, et al. New method for evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood equations with respect to compatibility [J]. International Journal of Fatigue, 2008, 30(10–11): 1967-1977.
DOI: 10.1016/j.ijfatigue.2008.01.012
Google Scholar
[21]
Shimada K, Komotori J, Shimizu M. The applicability of the Manson-Coffin law and Miner's law to extremely low cycle fatigue [J]. Nihon Kikai Gakkai RonbunshuA Hen/transactions of the Japan Society of Mechanical Engineers Part A, 1987, 53(491): 1178-1185.
DOI: 10.1299/kikaia.53.1178
Google Scholar
[22]
Wei W, Han L, Wang H, et al. Low-Cycle Fatigue Behavior and Fracture Mechanism of HS80H Steel at Different Strain Amplitudes and Mean Strains [J]. Journal of Materials Engineering & Performance, 2017, 26(4): 1717-1725.
DOI: 10.1007/s11665-017-2575-0
Google Scholar
[23]
Han L, Wang H, Wang J, et al. Strain Based Design and Field Application of Thermal Well Casing String for Cyclic Steam Stimulation Production; proceedings of the SPE Canada Heavy Oil Technical Conference, F, 2016 [C].
DOI: 10.2118/180703-ms
Google Scholar
[24]
Wenlan Wei, Hang Wang, Lihong Han, et al. Research of Steady creep rate and mechanism of 80SH steel under intermediate temperature critical stress condition [J]. Heat Treatment of Metals, 2019, 44(03):27-31.
Google Scholar