[1]
He Y, Peng Z. Settlement ways of the crack of slagmtc solidified body[J]. Natural Gas Industry, (2005).
Google Scholar
[2]
Cowan K M, Hale A H, Nahm J J. Conversion of drilling fluids to cements with blast furnace slag: Performance properties and applications for well cementing// Society of Petroleum Engineers, (1992).
DOI: 10.2118/24575-ms
Google Scholar
[3]
Hale A H, Cowan K M. Drilling and cementing with blast furnace slag/soluble/insoluble alcohol: US, US5358044. (1994).
Google Scholar
[4]
Sweatman R E, Nahm J J, Loeb D A, et al. First high-temperature applications of anti-gas migration slag cement and settable oil-mud removal spacers in deep South Texas Gas Wells//SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, (1995).
DOI: 10.2118/30512-ms
Google Scholar
[5]
Daulton D J, Bosworth S J, Pumphrey B, et al. Field experience with application of blast furnace slag to the drilling and cementing program in the Stratton field, South Texas. Oil Industry, 1995. SPE-29472-MS.
DOI: 10.2118/29472-ms
Google Scholar
[6]
Tare U, Growcock F, Takach N, et al. Investigation of blast furnace slag addition to water-based drilling fluids for reduction of drilling fluid invasion into permeable formations. 1998. SPE-47800-MS.
DOI: 10.2118/47800-ms
Google Scholar
[7]
Liu H J, Bu Y H, Li F. Experimental and theoretical study on slag MTC improving the cementing quality of the second interface. Advanced Materials Research, 2011, 361-363(1): 456-460.
DOI: 10.4028/www.scientific.net/amr.361-363.456
Google Scholar
[8]
Sarap G. D. The use of high-performance spacers for zonal isolation in high-temperature high-pressure wells. 2009.SPE/IADC 124275.
DOI: 10.2118/124275-ms
Google Scholar
[9]
Qiu J, Tan H S, Yang E H. Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites. Cement & Concrete Composites, 2016, 73:203-212.
DOI: 10.1016/j.cemconcomp.2016.07.013
Google Scholar
[10]
Neto A A M, Cincotto M A, Repette W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cement & Concrete Research, 2008, 38(4):565-574.
DOI: 10.1016/j.cemconres.2007.11.002
Google Scholar
[11]
Wei B, Cao H, Song S. RETRACTED: Environmental resistance and mechanical performance of basalt and glass fibers. Materials Science & Engineering A, 2010, 527(18-19):4708-4715.
DOI: 10.1016/j.msea.2010.04.021
Google Scholar
[12]
Song S, Sohn D, Jennings H M, et al. Hydration of alkali-activated ground granulated blast furnace slag. Journal of Materials Science, 2000, 35 (1): 249-257.
Google Scholar
[13]
Escalante-García J I, Fuentes A F, Gorokhovsky A, et al. Hydration products andreactivity of blast-furnace slag activated by various alkalis, Journal of the American Ceramic Society, 2010, 86(12): 2148-2153.
DOI: 10.1111/j.1151-2916.2003.tb03623.x
Google Scholar
[14]
Kong D, Huang S, Corr D, et al. Whether do nano-particles act as nucleation sites for C-S-H gel growth during cement hydration? Cem. Concr. Compos. [Internet].2018;87:98–109. Available from: https://doi.org/10.1016/j.cemconcomp.2017.12.007.
DOI: 10.1016/j.cemconcomp.2017.12.007
Google Scholar
[15]
Roosz C, Vieillard P, Blanc P, et al. Thermodynamic properties of C-S-H, C-A-S-H and M-S-H phases: Results from direct measurements and predictive modelling. Appl. Geochemistry [Internet]. 2018; 92: 140–156. Available from: https://doi.org/10.1016/j.apgeochem.2018.03.004.
DOI: 10.1016/j.apgeochem.2018.03.004
Google Scholar
[16]
Neto A A M, Cincotto M A, Repette W . Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cement and Concrete Research, 2008, 38(4):565-574.
DOI: 10.1016/j.cemconres.2007.11.002
Google Scholar
[17]
Vilaplana J L, Baeza F J, Galao O, et al. Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers. Construction and Building Materials, 2016, 116:63-71.
DOI: 10.1016/j.conbuildmat.2016.04.066
Google Scholar