[1]
Wang J, Ding L, Wei J, et al. Adsorption of copper ions by ion-imprinted simultaneous interpenetrating network hydrogel: Thermodynamics, morphology and mechanism[J]. Applied Surface Science, 2014, 305:412-418.
DOI: 10.1016/j.apsusc.2014.03.102
Google Scholar
[2]
Gong J, Wang X, Shao X, et al. Adsorption of heavy metal ions by hierarchically structured magnetite-carbonaceous spheres[J]. Talanta, 2012, 101(none):45-52.
DOI: 10.1016/j.talanta.2012.08.035
Google Scholar
[3]
Yu L I, Yan-Bin W, Xin G, et al. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China[J]. J Environ Sci, 2006, 18(6): 1124-1134.
DOI: 10.1016/s1001-0742(06)60050-8
Google Scholar
[4]
Nagai D, Daimon T, Kawakami S , et al. High-Recovery Material for Mercury Ions Based on a Polyallylamine Hydrogel with Thiourea Groups at Cross-Linking Points[J]. Industrial & Engineering Chemistry Research, 2014, 53(8):3300-3304.
DOI: 10.1021/ie403118b
Google Scholar
[5]
Li N, Bai R. A Novel Amine-Shielded Surface Cross-Linking of Chitosan Hydrogel Beads for Enhanced Metal Adsorption Performance[J]. Industrial & Engineering Chemistry Research, 2005, 44(17):6692-6700.
DOI: 10.1021/ie050145k
Google Scholar
[6]
Zhu H, Fu Y, Jiang R, et al. Optimization of Copper(II) Adsorption onto Novel Magnetic Calcium Alginate/Maghemite Hydrogel Beads Using Response Surface Methodology[J]. Industrial & Engineering Chemistry Research, 2014, 53(10):4059-4066.
DOI: 10.1021/ie4031677
Google Scholar
[7]
Mi F.L, Wu S.J, Lin F.M. Adsorption of copper(II) ions by a chitosan–oxalate complex biosorbent[J]. International Journal of Biological Macromolecules, 2015, 72:136-144.
DOI: 10.1016/j.ijbiomac.2014.08.006
Google Scholar
[8]
Chang Y, Xing S , Wei X , et al. Lignosulfanate-assistant hydrothermal method for synthesis of titanate nanotubes with improved adsorption capacity for metal ions[J]. Materials Letters, 2014, 132:353-356.
DOI: 10.1016/j.matlet.2014.06.085
Google Scholar
[9]
Zhang X, Liu J, Kelly S J, et al. Biomimetic snowflake-shaped magnetic micro-/nanostructures for highly efficient adsorption of heavy metal ions and organic pollutants from aqueous solution[J]. Journal of Materials Chemistry A, 2014, 2(30):11759.
DOI: 10.1039/c4ta02058h
Google Scholar
[10]
Ijagbemi C.O, Baek M H, Kim D S. Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal: Equilibrium, kinetics, thermodynamics and regeneration studies[J]. Journal of Hazardous Materials, 2010, 174(1-3):746-755.
DOI: 10.1016/j.jhazmat.2009.09.115
Google Scholar
[11]
Asthana A, Verma R, Singh A K, et al. Silver Nanoparticle Entrapped Calcium-Alginate Beads for Fe(II) Removal via Adsorption[J]. Macromolecular Symposia, 2016, 366(1):42-51.
DOI: 10.1002/masy.201650045
Google Scholar
[12]
Zhang H, Liu Q, Wang J, et al. Preparation of magnetic calcium silicate hydrate for the efficient removal of uranium from aqueous systems[J]. RSC Adv. 2015, 5(8):5904-5912.
DOI: 10.1039/c4ra08678c
Google Scholar