[1]
Kruth, J. P., Bartscher, M., Carmignato, S., Schmitt, R., De Chiffre, L., & Weckenmann, A.. Computed tomography for dimensional metrology. CIRP annals, 60(2) (2011), 821-842.
DOI: 10.1016/j.cirp.2011.05.006
Google Scholar
[2]
Welkenhuyzen, F., Kiekens, K., Pierlet, M., Dewulf, W., Bleys, P., Kruth, J. P., & Voet, A.. Industrial computer tomography for dimensional metrology: Overview of influence factors and improvement strategies. In Proceedings of the 4th international conference on optical measurement techniques for structures and systems: Optimess2009 (2009) , 401-410.
DOI: 10.1088/0957-0233/22/11/115502
Google Scholar
[3]
Carmignato, S.. Accuracy of industrial computed tomography measurements: Experimental results from an international comparison. CIRP annals, 61(1) (2012), 491-494.
DOI: 10.1016/j.cirp.2012.03.021
Google Scholar
[4]
Hiller, J., Maisl, M., & Reindl, L. M.. Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications. Measurement Science and Technology, 23(8) (2012), 085404.
DOI: 10.1088/0957-0233/23/8/085404
Google Scholar
[5]
Mikó, B., Farkas, G. Comparison of flatness and surface roughness parameters when face milling and turning. Development in Machining Technology, 7 (2017), 18-27.
Google Scholar
[6]
Carmignato, S., Aloisi, V., Medeossi, F., Zanini, F., & Savio, E.. Influence of surface roughness on computed tomography dimensional measurements. CIRP Annals, 66(1) (2017), 499-502.
DOI: 10.1016/j.cirp.2017.04.067
Google Scholar
[7]
Lifton, J. J., & Carmignato, S. (2017). Simulating the influence of scatter and beam hardening in dimensional computed tomography. Measurement Science and Technology, 28(10) (2017), 104001.
DOI: 10.1088/1361-6501/aa80b2
Google Scholar
[8]
Tan, Y., Kiekens, K., Welkenhuyzen, F., Kruth, J. P., & Dewulf, W.. Beam hardening correction and its influence on the measurement accuracy and repeatability for CT dimensional metrology applications. In Conf. on Industrial Computed Tomography. Wels, Austria. (2012), 355-362.
DOI: 10.1088/0957-0233/22/11/115502
Google Scholar
[9]
Kiekens, K., Welkenhuyzen, F., Tan, Y., Bleys, P., Voet, A., Kruth, J. P., & Dewulf, W.. A test object with parallel grooves for calibration and accuracy assessment of industrial computed tomography (CT) metrology. Measurement Science and Technology, 22(11) (2011), 115502.
DOI: 10.1088/0957-0233/22/11/115502
Google Scholar
[10]
Lifton, J. J., Malcolm, A. A., McBride, J. W., & Cross, K. J. The application of voxel size correction in x-ray computed tomography for dimensional metrology. In Singapore international NDT conference & exhibition (2013).
Google Scholar
[11]
Kraemer, A., & Lanza, G.. Assessment of the measurement procedure for dimensional metrology with X-ray computed tomography. Procedia CIRP, 43, (2016), 362-367.
DOI: 10.1016/j.procir.2016.02.018
Google Scholar
[12]
Cantatore, A.,Müller, P.: Introduction to computed tomography, DTU Mechanical Engineering, Kgs.Lyngby, Denmark, (2011).
Google Scholar
[13]
Drégelyi-Kiss, Á., Durakbasa, N.M.: Measurement error on the reconstruction step in case of industrial computed tomograph. In: The International Symposium for Production Research, p.309–323. Springer, Cham (2019).
DOI: 10.1007/978-3-319-92267-6_27
Google Scholar
[14]
Drégelyi-Kiss, Á.. Towards Traceable Dimensional Measurements by Micro Computed Tomography. In International Conference on Measurement and Quality Control-Cyber Physical Issue (2019) pp.247-254. Springer, Cham.
DOI: 10.1007/978-3-030-18177-2_23
Google Scholar