[1]
V.A. Nazarova, V.M. Bondarenko, M.T. Azarova, Structural transformations in high-temperature treatment of oxidized polyacrylonitrile fibres, Fibre. Chem. 27 (1995) 10-14.
DOI: 10.1007/bf00551521
Google Scholar
[2]
J. Kim, Y.C. Kim, W. Ahn, C.Y. Kim, Reaction mechanisms of polyacrylonitrile on thermal treatment, Polym. Eng. Sci. 33 (1993) 1452-1457.
DOI: 10.1002/pen.760332203
Google Scholar
[3]
W.X. Zhang, Y.Z. Wang, Manufacture of carbon fibers from PAN precursors treated with CoSO4, J. Appl. Polym. Sci. 85 (2002) 153-158.
DOI: 10.1002/app.10560
Google Scholar
[4]
E. Cipriani, M. Zanetti, P. Bracco, V. Brunella, M.P. Luda, L. Costa, Crosslinking and carbonization processes in PAN films and nanofibers, Polym. Degrad. Stab. 123 (2016) 178-188.
DOI: 10.1016/j.polymdegradstab.2015.11.008
Google Scholar
[5]
T.J. Xue, M.A. McKinney, C.A. Wilkie, The thermal degradation of polyacrylonitrile, Polym. Degrad. Stab. 58 (1997) 193-202.
Google Scholar
[6]
Y.H. Li, Y.X. Yu, Y.D. Liu, C. X. Lu, Interphase development in polyacrylonitrile/SWNT nanocomposite and its effect on cyclization and carbonization for tuning carbon structures, Appl. Nano Mater. 1 (2018) 3105-3113.
DOI: 10.1021/acsanm.8b00125
Google Scholar
[7]
D.C. Gupta, J.P. Agrawal, Effect of comonomers on thermal degradation of polyacrylonitrile, J. Appl. Polym. Sci. 38 (1989) 265-270.
DOI: 10.1002/app.1989.070380207
Google Scholar
[8]
D, Renjith, C.P. Reghunadhan Nair, R. Sadhana, N.S. Babu, K.N. Ninan, Fourier transform infrared and wide-angle X-ray diffraction studies of the thermal cyclization reactions of high-molar-mass poly(acrylonitrile-co-itaconic acid), J. Appl. Polym. Sci. 100 (2006) 3055-3062.
DOI: 10.1002/app.23705
Google Scholar
[9]
S.K. Nataraj, B.H. Kim, J.H. Yun, D.H. Lee, T.M. Aminabhavi, K.S. Yang, Effect of added nickel nitrate on the physical, thermal and morphological characteristics of polyacrylonitrile-based carbon nanofibers, Mater. Sci. Eng. B. 162 (2009) 75-81.
DOI: 10.1016/j.mseb.2009.03.008
Google Scholar
[10]
Y.A. Aggour, M.S. Aziz, Degradation of polyacrylonitrile by low energy ion beam and UV radiation, Polym. Test. 19 (2000) 261-267.
DOI: 10.1016/s0142-9418(98)00087-7
Google Scholar
[11]
S.P. Liu, R.T. Liu, K.Q. Han, H. Liu, M.H. Yu, Influence of γ-ray irradiation on structure and properties of PAN precursor fibers, Polym. Eng. Sci. 56 (2016) 1313-1318.
DOI: 10.1002/pen.24372
Google Scholar
[12]
J.P. Jeun, H.B. Kim, S.H. Oh, J.K. Park, P.H. Kang, Effects of electron beam irradiation on the electrospinning of polyacrylonitrile, J. Nanosci. Nanotechno. 15 (2015) 5942-5945.
DOI: 10.1166/jnn.2015.10436
Google Scholar
[13]
J. Yang, Y.C. Liu, J. Liu, Z.G. Shen, J.Y. Liang, X.X. Wang, Rapid and continuous preparation of polyacrylonitrile-based carbon fibers with electron-beam irradiation pretreatment, Materials. 11 (2018) 1270.
DOI: 10.3390/ma11081270
Google Scholar
[14]
T. Shibukawa, M. Sone, A. Uchida, Light-scattering study of polyacrylonitrile solution, J. Polym. Sci. A. 6 (1968) 147-159.
DOI: 10.1002/pol.1968.150060114
Google Scholar
[15]
W.H. Liu, M.H. Wang, Z. Xing, Y.N. Qi, G.Z. Wu, Radiation-induced crosslinking of polyacrylonitrile fibers and the subsequent regulative effect on the preoxidation process, Radiat. Phys. Chem. 81 (2012) 622-627.
DOI: 10.1016/j.radphyschem.2012.02.029
Google Scholar
[16]
T.C. Chung, Y. Schlesinger, S. Etemad, A.G. MacDiarmid, A.J. Heeger, Optical studies of pyrolyzed polyacrylonitrile, J. Polym. Sci. Phys. Ed. 22 (1984) 1239-1246.
DOI: 10.1002/pol.1984.180220708
Google Scholar
[17]
S. Pethkar, J.A. Dharmadhikari, A.A. Athawale, R.C. Aiyer, K. Vijayamohanan, Evidence for second-order optical nonlinearity in γ-ray induced partially cross-linked polyacrylonitrile, J. Phys. Chem. B. 105 (2001) 5110-511.
DOI: 10.1021/jp003438u
Google Scholar