Study of Electron Beam Pre-Irradiation on Char Yields of Polyacrylonitrile

Article Preview

Abstract:

Thermal treatment of polyacrylonitrile (PAN) with different molecular weights pre-irradiated by electron beam was prepared to study the radiation effects on thermal behaviors. Thermal properties were characterized by thermogravimetric analyses. Char yields (800 oC) of PAN samples are increased remarkably with the increase of irradiation dose, and all samples can obtain the similar high char yields (~57 %) at the dose of 300 kGy. FTIR and UV-visible absorption spectra of pre-irradiation PAN illustrate the formation of –HC=N-N=CH-crosslinking conjugation across the polymeric chains, which can improve PAN’s thermal behaviors. Char yields of pre-irradiated PAN samples are mainly dominated by their gel contents, and they are almost independent of the molecular weights of PAN samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-40

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.A. Nazarova, V.M. Bondarenko, M.T. Azarova, Structural transformations in high-temperature treatment of oxidized polyacrylonitrile fibres, Fibre. Chem. 27 (1995) 10-14.

DOI: 10.1007/bf00551521

Google Scholar

[2] J. Kim, Y.C. Kim, W. Ahn, C.Y. Kim, Reaction mechanisms of polyacrylonitrile on thermal treatment, Polym. Eng. Sci. 33 (1993) 1452-1457.

DOI: 10.1002/pen.760332203

Google Scholar

[3] W.X. Zhang, Y.Z. Wang, Manufacture of carbon fibers from PAN precursors treated with CoSO4, J. Appl. Polym. Sci. 85 (2002) 153-158.

DOI: 10.1002/app.10560

Google Scholar

[4] E. Cipriani, M. Zanetti, P. Bracco, V. Brunella, M.P. Luda, L. Costa, Crosslinking and carbonization processes in PAN films and nanofibers, Polym. Degrad. Stab. 123 (2016) 178-188.

DOI: 10.1016/j.polymdegradstab.2015.11.008

Google Scholar

[5] T.J. Xue, M.A. McKinney, C.A. Wilkie, The thermal degradation of polyacrylonitrile, Polym. Degrad. Stab. 58 (1997) 193-202.

Google Scholar

[6] Y.H. Li, Y.X. Yu, Y.D. Liu, C. X. Lu, Interphase development in polyacrylonitrile/SWNT nanocomposite and its effect on cyclization and carbonization for tuning carbon structures, Appl. Nano Mater. 1 (2018) 3105-3113.

DOI: 10.1021/acsanm.8b00125

Google Scholar

[7] D.C. Gupta, J.P. Agrawal, Effect of comonomers on thermal degradation of polyacrylonitrile, J. Appl. Polym. Sci. 38 (1989) 265-270.

DOI: 10.1002/app.1989.070380207

Google Scholar

[8] D, Renjith, C.P. Reghunadhan Nair, R. Sadhana, N.S. Babu, K.N. Ninan, Fourier transform infrared and wide-angle X-ray diffraction studies of the thermal cyclization reactions of high-molar-mass poly(acrylonitrile-co-itaconic acid), J. Appl. Polym. Sci. 100 (2006) 3055-3062.

DOI: 10.1002/app.23705

Google Scholar

[9] S.K. Nataraj, B.H. Kim, J.H. Yun, D.H. Lee, T.M. Aminabhavi, K.S. Yang, Effect of added nickel nitrate on the physical, thermal and morphological characteristics of polyacrylonitrile-based carbon nanofibers, Mater. Sci. Eng. B. 162 (2009) 75-81.

DOI: 10.1016/j.mseb.2009.03.008

Google Scholar

[10] Y.A. Aggour, M.S. Aziz, Degradation of polyacrylonitrile by low energy ion beam and UV radiation, Polym. Test. 19 (2000) 261-267.

DOI: 10.1016/s0142-9418(98)00087-7

Google Scholar

[11] S.P. Liu, R.T. Liu, K.Q. Han, H. Liu, M.H. Yu, Influence of γ-ray irradiation on structure and properties of PAN precursor fibers, Polym. Eng. Sci. 56 (2016) 1313-1318.

DOI: 10.1002/pen.24372

Google Scholar

[12] J.P. Jeun, H.B. Kim, S.H. Oh, J.K. Park, P.H. Kang, Effects of electron beam irradiation on the electrospinning of polyacrylonitrile, J. Nanosci. Nanotechno. 15 (2015) 5942-5945.

DOI: 10.1166/jnn.2015.10436

Google Scholar

[13] J. Yang, Y.C. Liu, J. Liu, Z.G. Shen, J.Y. Liang, X.X. Wang, Rapid and continuous preparation of polyacrylonitrile-based carbon fibers with electron-beam irradiation pretreatment, Materials. 11 (2018) 1270.

DOI: 10.3390/ma11081270

Google Scholar

[14] T. Shibukawa, M. Sone, A. Uchida, Light-scattering study of polyacrylonitrile solution, J. Polym. Sci. A. 6 (1968) 147-159.

DOI: 10.1002/pol.1968.150060114

Google Scholar

[15] W.H. Liu, M.H. Wang, Z. Xing, Y.N. Qi, G.Z. Wu, Radiation-induced crosslinking of polyacrylonitrile fibers and the subsequent regulative effect on the preoxidation process, Radiat. Phys. Chem. 81 (2012) 622-627.

DOI: 10.1016/j.radphyschem.2012.02.029

Google Scholar

[16] T.C. Chung, Y. Schlesinger, S. Etemad, A.G. MacDiarmid, A.J. Heeger, Optical studies of pyrolyzed polyacrylonitrile, J. Polym. Sci. Phys. Ed. 22 (1984) 1239-1246.

DOI: 10.1002/pol.1984.180220708

Google Scholar

[17] S. Pethkar, J.A. Dharmadhikari, A.A. Athawale, R.C. Aiyer, K. Vijayamohanan, Evidence for second-order optical nonlinearity in γ-ray induced partially cross-linked polyacrylonitrile, J. Phys. Chem. B. 105 (2001) 5110-511.

DOI: 10.1021/jp003438u

Google Scholar