[1]
M. W. Kanan and D. G. Nocera, In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+,, Science (80-. )., vol. 321, no. 5892, p.1072–1075, Aug. (2008).
DOI: 10.1126/science.1162018
Google Scholar
[2]
M. Huynh, C. Shi, S. J. L. Billinge, and D. G. Nocera, Nature of Activated Manganese Oxide for Oxygen Evolution,, J. Am. Chem. Soc., vol. 137, no. 47, p.14887–14904, Dec. (2015).
DOI: 10.1021/jacs.5b06382
Google Scholar
[3]
C. C. L. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction,, J. Am. Chem. Soc., vol. 135, no. 45, p.16977–16987, Nov. (2013).
DOI: 10.1021/ja407115p
Google Scholar
[4]
H. Schäfer et al., Steel-based electrocatalysts for efficient and durable oxygen evolution in acidic media,, Catal. Sci. Technol., vol. 8, no. 8, p.2104–2116, (2018).
Google Scholar
[5]
B. C. Moon, W. H. Choi, K.-H. Kim, D. G. Park, J. W. Choi, and J. K. Kang, Ultrafine Metallic Nickel Domains and Reduced Molybdenum States Improve Oxygen Evolution Reaction of NiFeMo Electrocatalysts,, Small, vol. 15, no. 19, p.1804764, May (2019).
DOI: 10.1002/smll.201804764
Google Scholar
[6]
M. Morita, C. Iwakura, and H. Tamura, The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate,, Electrochim. Acta, vol. 22, no. 4, p.325–328, (1977).
DOI: 10.1016/0013-4686(77)85081-0
Google Scholar
[7]
X. Lu and C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities,, Nat. Commun., vol. 6, p.6616, Mar. (2015).
DOI: 10.1038/ncomms7616
Google Scholar
[8]
F. Yu, F. Li, B. Zhang, H. Li, and L. Sun, Efficient Electrocatalytic Water Oxidation by a Copper Oxide Thin Film in Borate Buffer,, ACS Catal., vol. 5, no. 2, p.627–630, Feb. (2015).
DOI: 10.1021/cs501510e
Google Scholar
[9]
M. W. Kanan, Y. Surendranath, and D. G. Nocera, Cobalt–phosphate oxygen-evolving compound,, Chem. Soc. Rev., vol. 38, no. 1, p.109–114, (2009).
DOI: 10.1039/b802885k
Google Scholar
[10]
A. J. Esswein, Y. Surendranath, S. Y. Reece, and D. G. Nocera, Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters,, Energy Environ. Sci., vol. 4, no. 2, p.499–504, (2011).
DOI: 10.1039/c0ee00518e
Google Scholar
[11]
M. Dincă, Y. Surendranath, and D. G. Nocera, Nickel-borate oxygen-evolving catalyst that functions under benign conditions,, Proc. Natl. Acad. Sci., vol. 107, no. 23, p.10337 LP – 10341, Jun. (2010).
DOI: 10.1073/pnas.1001859107
Google Scholar
[12]
M. Huynh, D. K. Bediako, and D. G. Nocera, A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid,, J. Am. Chem. Soc., vol. 136, no. 16, p.6002–6010, Apr. (2014).
DOI: 10.1021/ja413147e
Google Scholar
[13]
J. G. McAlpin et al., EPR Evidence for Co(IV) Species Produced During Water Oxidation at Neutral pH,, J. Am. Chem. Soc., vol. 132, no. 20, p.6882–6883, May (2010).
DOI: 10.1021/ja1013344
Google Scholar
[14]
M. W. Kanan, J. Yano, Y. Surendranath, M. Dincă, V. K. Yachandra, and D. G. Nocera, Structure and Valency of a Cobalt−Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy,, J. Am. Chem. Soc., vol. 132, no. 39, p.13692–13701, Oct. (2010).
DOI: 10.1021/ja1023767
Google Scholar
[15]
M. Risch et al., Nickel-oxido structure of a water-oxidizing catalyst film,, Chem. Commun., vol. 47, no. 43, p.11912–11914, (2011).
DOI: 10.1039/c1cc15072c
Google Scholar
[16]
M. Risch, V. Khare, I. Zaharieva, L. Gerencser, P. Chernev, and H. Dau, Cobalt−Oxo Core of a Water-Oxidizing Catalyst Film,, J. Am. Chem. Soc., vol. 131, no. 20, p.6936–6937, May (2009).
DOI: 10.1021/ja902121f
Google Scholar
[17]
L. Xi, C. Schwanke, J. Xiao, F. F. Abdi, I. Zaharieva, and K. M. Lange, In Situ L-Edge XAS Study of a Manganese Oxide Water Oxidation Catalyst,, J. Phys. Chem. C, vol. 121, no. 22, p.12003–12009, Jun. (2017).
DOI: 10.1021/acs.jpcc.7b02331
Google Scholar
[18]
L. Xi, C. Schwanke, D. Zhou, D. Drevon, R. van de Krol, and K. M. Lange, In situ XAS study of CoBi modified hematite photoanodes,, Dalt. Trans., vol. 46, no. 45, p.15719–15726, (2017).
DOI: 10.1039/c7dt02647a
Google Scholar
[19]
L. Xi et al., In Situ Structural Study of MnPi-Modified BiVO4 Photoanodes by Soft X-ray Absorption Spectroscopy,, J. Phys. Chem. C, vol. 121, no. 36, p.19668–19676, Sep. (2017).
DOI: 10.1021/acs.jpcc.7b06459
Google Scholar
[20]
P. Du, O. Kokhan, K. W. Chapman, P. J. Chupas, and D. M. Tiede, Elucidating the Domain Structure of the Cobalt Oxide Water Splitting Catalyst by X-ray Pair Distribution Function Analysis,, J. Am. Chem. Soc., vol. 134, no. 27, p.11096–11099, Jul. (2012).
DOI: 10.1021/ja303826a
Google Scholar
[21]
C. L. Farrow, D. K. Bediako, Y. Surendranath, D. G. Nocera, and S. J. L. Billinge, Intermediate-Range Structure of Self-Assembled Cobalt-Based Oxygen-Evolving Catalyst,, J. Am. Chem. Soc., vol. 135, no. 17, p.6403–6406, May (2013).
DOI: 10.1021/ja401276f
Google Scholar
[22]
I. Khalakhan, A. Choukourov, M. Vorokhta, P. Kúš, I. Matolínová, and V. Matolín, In situ electrochemical AFM monitoring of the potential-dependent deterioration of platinum catalyst during potentiodynamic cycling,, Ultramicroscopy, vol. 187, p.64–70, (2018).
DOI: 10.1016/j.ultramic.2018.01.015
Google Scholar
[23]
T. Zhang et al., Cobalt and cobalt carbide on alumina/NiAl(110) as model catalysts,, Catal. Sci. Technol., vol. 7, no. 24, p.5893–5899, (2017).
DOI: 10.1039/c7cy01806a
Google Scholar
[24]
E. Sartoretti et al., In situ Raman analyses of the soot oxidation reaction over nanostructured ceria-based catalysts,, Sci. Rep., vol. 9, no. 1, p.3875, (2019).
DOI: 10.1038/s41598-019-39105-5
Google Scholar
[25]
R. Wiesinger, U. Schade, C. Kleber, and M. Schreiner, An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes,, Rev. Sci. Instrum., vol. 85, no. 6, p.64102, Jun. (2014).
DOI: 10.1063/1.4880458
Google Scholar
[26]
K. Ataka, T. Yotsuyanagi, and M. Osawa, Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy,, J. Phys. Chem., vol. 100, no. 25, p.10664–10672, Jan. (1996).
DOI: 10.1021/jp953636z
Google Scholar
[27]
J.-M. Andanson and A. Baiker, Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy,, Chem. Soc. Rev., vol. 39, no. 12, p.4571–4584, (2010).
DOI: 10.1039/b919544k
Google Scholar
[28]
C. Su and D. L. Suarez, Coordination of Adsorbed Boron: A FTIR Spectroscopic Study,, Environ. Sci. Technol., vol. 29, no. 2, p.302–311, Feb. (1995).
DOI: 10.1021/es00002a005
Google Scholar
[29]
M. Zhang, M. de Respinis, and H. Frei, Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst,, Nat. Chem., vol. 6, p.362, Feb. (2014).
DOI: 10.1038/nchem.1874
Google Scholar
[30]
A. M. Duffin, C. P. Schwartz, A. H. England, J. S. Uejio, D. Prendergast, and R. J. Saykally, pH-dependent x-ray absorption spectra of aqueous boron oxides,, J. Chem. Phys., vol. 134, no. 15, p.154503, Apr. (2011).
DOI: 10.1063/1.3574838
Google Scholar
[31]
F. Zaera, Probing Liquid/Solid Interfaces at the Molecular Level,, Chem. Rev., vol. 112, no. 5, p.2920–2986, May (2012).
DOI: 10.1021/cr2002068
Google Scholar
[32]
M. Osawa, K.-I. Ataka, K. Yoshii, and Y. Nishikawa, Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles,, Appl. Spectrosc., vol. 47, no. 9, p.1497–1502, (1993).
DOI: 10.1366/0003702934067478
Google Scholar
[33]
S. E. Glassford, B. Byrne, and S. G. Kazarian, Recent applications of ATR FTIR spectroscopy and imaging to proteins,, Biochim. Biophys. Acta - Proteins Proteomics, vol. 1834, no. 12, p.2849–2858, (2013).
DOI: 10.1016/j.bbapap.2013.07.015
Google Scholar
[34]
S.-G. Sun, W.-B. Cai, L.-J. Wan, and M. Osawa, Infrared Absorption Enhancement for CO Adsorbed on Au Films in Perchloric Acid Solutions and Effects of Surface Structure Studied by Cyclic Voltammetry, Scanning Tunneling Microscopy, and Surface-Enhanced IR Spectroscopy,, J. Phys. Chem. B, vol. 103, no. 13, p.2460–2466, Apr. (1999).
DOI: 10.1021/jp984028x
Google Scholar
[35]
N. Hoshi, K. Kida, M. Nakamura, M. Nakada, and K. Osada, Structural Effects of Electrochemical Oxidation of Formic Acid on Single Crystal Electrodes of Palladium,, J. Phys. Chem. B, vol. 110, no. 25, p.12480–12484, Jun. (2006).
DOI: 10.1021/jp0608372
Google Scholar
[36]
A. M. Levendorf, D.-J. Chen, C. L. Rom, Y. Liu, and Y. J. Tong, Electrochemical and in situ ATR-SEIRAS investigations of methanol and CO electro-oxidation on PVP-free cubic and octahedral/tetrahedral Pt nanoparticles,, RSC Adv., vol. 4, no. 41, p.21284–21293, (2014).
DOI: 10.1039/c4ra00815d
Google Scholar
[37]
K. Ataka and M. Osawa, In Situ Infrared Study of Water−Sulfate Coadsorption on Gold(111) in Sulfuric Acid Solutions,, Langmuir, vol. 14, no. 4, p.951–959, Feb. (1998).
DOI: 10.1021/la971110v
Google Scholar
[38]
N. F. Moraes IR, Cunha MCPM, Vibrational Spectroscopy of Adsorbed Sulfate and Nitrate Ions on Au(100) Electrodes.,, J. Braz. Chem. Soc., vol. 7, no. 6, p.453–460, (1996).
DOI: 10.5935/0103-5053.19960084
Google Scholar
[39]
K. Klingan et al., Water Oxidation by Amorphous Cobalt-Based Oxides: Volume Activity and Proton Transfer to Electrolyte Bases,, ChemSusChem, vol. 7, no. 5, p.1301–1310, May (2014).
DOI: 10.1002/cssc.201301019
Google Scholar
[40]
S. M. Pershin, A. F. Bunkin, and V. A. Luk'yanchenko, Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99°C,, Quantum Electron., vol. 40, no. 12, p.1146–1148, (2011).
DOI: 10.1070/qe2010v040n12abeh014397
Google Scholar
[41]
B. Molina Concha, M. Chatenet, E. A. Ticianelli, and F. H. B. Lima, In Situ Infrared (FTIR) Study of the Mechanism of the Borohydride Oxidation Reaction on Smooth Pt Electrode,, J. Phys. Chem. C, vol. 115, no. 25, p.12439–12447, Jun. (2011).
DOI: 10.1021/jp2002589
Google Scholar
[42]
D. E. Bethell and N. Sheppard, The infra-red spectrum and structure of boric acid,, Trans. Faraday Soc., vol. 51, no. 0, p.9–15, (1955).
DOI: 10.1039/tf9555100009
Google Scholar
[43]
D. L. S. P. Derek, L. George, ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide,, in Geochimica et Cosmochimica Acta, 2003, p.2551–2560.
DOI: 10.1016/s0016-7037(03)00096-6
Google Scholar
[44]
M. Risch et al., Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis,, Energy Environ. Sci., vol. 8, no. 2, p.661–674, (2015).
DOI: 10.1039/c4ee03004d
Google Scholar
[45]
P. Benson, G. W. D. Briggs, and W. F. K. Wynne-Jones, The cobalt hydroxide electrode—II. Electrochemical behaviour,, Electrochim. Acta, vol. 9, no. 3, p.281–288, (1964).
DOI: 10.1016/0013-4686(64)80017-7
Google Scholar
[46]
C. G. Granqvist, Handbook of Inorganic Electrochromic Materials. Elsevier Science, (1995).
Google Scholar
[47]
B. S. Yeo and A. T. Bell, Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen,, J. Am. Chem. Soc., vol. 133, no. 14, p.5587–5593, Apr. (2011).
DOI: 10.1021/ja200559j
Google Scholar
[48]
C. Pasquini et al., H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation,, J. Am. Chem. Soc., vol. 141, no. 7, p.2938–2948, Feb. (2019).
DOI: 10.1021/jacs.8b10002
Google Scholar
[49]
H. Belhadj, A. Hakki, P. K. J. Robertson, and D. W. Bahnemann, In situ ATR-FTIR study of H2O and D2O adsorption on TiO2 under UV irradiation,, Phys. Chem. Chem. Phys., vol. 17, no. 35, p.22940–22946, (2015).
DOI: 10.1039/c5cp03947a
Google Scholar