Aspects Regarding of Nanomaterials and Nanocomposites in 3D Printing Technology Process Development for Application in Biomedicine

Article Preview

Abstract:

This paper will present the advantages of developing the 3D printing process of nanomaterials in different fields such as electronics, biomedical and bioelectronics. As it is already known, nanomaterials are starting to become more and more useful, and more emphasis is being put on the development of new technologies to enable the use of these materials. Nanomaterials consist mainly of chemical substances made up from very small particles that are no larger than a hundred nanometers. These materials occur in nature, they can be an accidental product of human activity, or they can be consciously made to develop new characteristics such as strength, chemical reactivity or increased conductivity compared to the same material that does not display nanometric characteristics. By integrating nanomaterials to 3D printing technology, it is possible to create unique structures, which are difficult to achieve. Nanomaterials can possibly work on personal satisfaction and add to the advancement of European industry. However, new materials can also pose health and environmental risks. Scientific research has turned its attention to the potential outcomes of the production and application of nanomaterials. Meanwhile, the newest method for 3D printing of nanomaterials is Multiphase Direct Ink Writing (MDIW), a method developed from Direct Ink Writing (DIW), a revolutionary additive manufacturing mechanism with wide applications in structural engineering systems, thermal isolation, electrical conductivity, optical reflectivity, and biomedical scaffolds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-38

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Palmara, G.; Frascella, F.; Roppolo, I.; Chiappone, A.; Chiadò, A.J.B. Functional 3D printing: Approaches and bio applications. Biosens. Bioelectron. 2021, 175, 112849

DOI: 10.1016/j.bios.2020.112849

Google Scholar

[2] E.B. Duoss, T.H. Weisgraber, K. Hearon, C. Zhu, W. Small, T.R. Metz, J.J. Vericella, H.D. Barth, J.D. Kuntz, R.S. Maxwell, C.M. Spadaccini, T.S. Wilson, Adv. Funct. Mater. 24. 2014, 4905

DOI: 10.1002/adfm.201400451

Google Scholar

[3] H. Goesmann, C. Feldmann, Angew. Chem., Int. Ed. 2010, 49, 1362

DOI: 10.1002/anie.200903053

Google Scholar

[4] S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, L. H. Allen, Phys. Rev. Lett. 1996, 77, 99

DOI: 10.1103/PhysRevLett.77.99

Google Scholar

[5] J.S. Kang, J. Ryu, H. S. Kim, H. T. Hahn, J. Electron. Mater. 2011, 40, 2268

DOI: 10.1007/s11664-011-1711-0

Google Scholar

[6] A.Z. Moshfegh, J. Phys. D: Appl. Phys. 2009, 42, 233001

DOI: 10.1088/0022-3727/42/23/233001

Google Scholar

[7] Q. Zhang, F. Zhang, X. Xu, C. Zhou, D. Lin, ACS Nano. 2018, 12, 1096

DOI: 10.1021/acsnano.7b06095

Google Scholar

[8] T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Nat. Photonics. 2016, 10, 554

DOI: 10.1038/nphoton.2016.121

Google Scholar

[9] Reiser, A., Lindén, M., Rohner, P., et al. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat Commun 10, 1853. 2019

DOI: 10.1038/s41467-019-09827-1

Google Scholar

[10] Q. Zhang, F. Zhang, S. P. Medarametla, H. Li, C. Zhou, D. Lin, Small. 2016, 12, 1702

DOI: 10.1002/smll.201503524

Google Scholar

[11] Mahnaz Amiri, Khalil Eskandari, Masoud Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application, Advances in Colloid and Interface Science, Volume 271. 2019, 101982, ISSN 0001-8686

DOI: 10.1016/j.cis.2019.07.003

Google Scholar

[12] L. Lu, P. Guo, Y. Pan, J. Manuf. Sci. Eng. 2017, 139, 071008

DOI: 10.1115/1.4035964

Google Scholar

[13] E.A. Guzzi, M.W. Tibbitt, Adv. Mater. 2019, 1901994. https://doi.org/10.1002/adma. 201901994

Google Scholar

[14] A. E. Jakus, E. B. Secor, A. L. Rutz, S. W. Jordan, M. C. Hersam, R. N. Shah, ACS Nano. 2015, 9, 4636

DOI: 10.1021/acsnano.5b01179

Google Scholar

[15] M. Lee, K. Bae, P. Guillon, J. Chang, Ø. Arlov, M. Zenobi-Wong, ACS Appl. Mater. Interfaces 2018, 10, 37820

DOI: 10.1021/acsami.8b13166

Google Scholar

[16] A. C. Marques, M. Vale, D. Vicente, M. Schreck, E. Tervoort and M. Niederberger, Global Challenges, 2021, 2000116

DOI: 10.1002/gch2.202000116

Google Scholar

[17] C. S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou, A. Harvey, C. Backes, Z. Li, M. S. Ferreira, M. E. Möbius, R. J. Young, J. N. Coleman, Science 2016, 354, 1257

DOI: 10.1126/science.aag2879

Google Scholar

[18] T. Hu, X. Mei, Y. Wang, et al., Two-dimensional nanomaterials: fascinating materials in biomedical field, Science Bulletin, 2019

DOI: 10.1016/j.scib.2019.09.021

Google Scholar

[19] Zachary TA, Ghasemi NMN Additive manufacturing/3D printing of polymer nanocomposites: structure-related multifunctional properties. In: Structure and properties of additive manufactured polymer components. 2020, p.87–113

DOI: 10.1016/B978-0-12-819535-2.00004-1

Google Scholar

[20] R. Dermanaki Farahani, M. Dubé, Printing polymer nanocomposites and composites in three dimensions, Adv. Eng. Mater. 20 (2) (2018) 1700539

DOI: 10.1002/adem.201700539

Google Scholar

[21] Jain, K.; Shukla, R.; Yadav, A.; Ujjwal, R.R.; Flora, S.J.S. 3D Printing in Development of Nanomedicines. Nanomaterials 2021, 11, 420

DOI: 10.3390/nano11020420

Google Scholar

[22] Khan, S.A., Lazoglu, I. Development of additively manufacturable and electrically conductive graphite–polymer composites. Prog Addit Manuf 5, 153–162 (2020). https://doi.org/

DOI: 10.1007/s40964-019-00102-9

Google Scholar

[23] J. Cesarano, R. Segalman, P. Calvert, Ceram. Ind. 1998, 184, 94

Google Scholar

[24] S. L. Morissette, J. A. Lewis, P. G. Clem, J. Cesarano, D. B. Dimos, J. Am. Ceram. Soc. 2001, 84, 2462

DOI: 10.1111/j.1151-2916.2001.tb01036.x

Google Scholar

[25] D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, J. Biomed. Mater. Res. 2001, 55, 203. https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO; 2-7

DOI: 10.1002/1097-4636(200105)55:2<203::aid-jbm1007>3.0.co;2-7

Google Scholar

[26] E. Sachs, M. Cima, P. Williams, D. Brancazio, J. Cornie, J. Eng. Ind. Trans. ASME 1992, 114, 481

DOI: 10.1115/1.2900701

Google Scholar

[27] K. A. M. Seerden, N. Reis, J. R. G. Evans, P. S. Grant, J. W. Halloran, B. Derby, J. Am. Ceram. Soc. 2001, 84, 2514

DOI: 10.1111/j.1151-2916.2001.tb01045.x

Google Scholar

[28] J. A. Lewis, G. M. Gratson, Mater. Today 2004, 7, 32

DOI: 10.1016/S1369-7021(04)00344-X

Google Scholar

[29] Ravichandran, D, & Song, K. "One-Step 3D Printed Layers Along With xy-in Plane Directions for Enhanced Multifunctional Nanocomposites." Proceedings of the ASME 2022 17th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Biomanufacturing; Life Cycle Engineering; Manufacturing Equipment and Automation; Nano/Micro/Meso Manufacturing. West Lafayette, Indiana, USA. June 27–July 1, 2022. V001T01A007. ASME

DOI: 10.1115/MSEC2022-85056

Google Scholar

[30] Dharneedar Ravichandran, Weiheng Xu, Mounika Kakarla, Sayli Jambhulkar, Yuxiang Zhu, Kenan Song, Multiphase direct ink writing (MDIW) for multilayered polymer/nanoparticle composites, Additive Manufacturing, Volume 47, 2021, 102322, ISSN 2214-8604

DOI: 10.1016/j.addma.2021.102322

Google Scholar