Carbon Nanosphere-Decorated Porous Cobalt MOF Nanoclusters with Enhanced Current-Voltage Characteristics

Article Preview

Abstract:

A new set of nanocrystals of carbon nanospheres (5%, 10%, and 15% by weight) were synthesized and were anchored to cobalt based metal-organic frameworks (Co-MOFs). They were synthesized using the organic linker, 4-{[(1E)-1-hydroxy-3-oxoprop-1-en-2-yl]sulfanyl}benzoic acid (4-HSPBA) via solvothermal synthesis. The synthesized materials were characterized for structural and morphological properties by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Brunauer–Emmett–Teller (BET) surface area analysis. The electrochemical characteristics of the obtained Co-MOFs and carbon nanosphere-contained Co-MOF nanocomposites were investigated comprehensively by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The EIS tests revealed the characteristic current-voltage properties of pristine Co-MOFs and carbon nanosphere-doped Co-MOFs. While the undoped Co-MOF exhibited nearly linear current-voltage behavior, introduction of carbon nanospheres at increasing concentrations (5 wt.%, 10 wt.%, and 15 wt.%) resulted in very high non-linearity in the current-voltage response. The reason for non-linearity is a synergistic effect between carbon nanospheres and the Co-MOF matrix, which greatly influences the transport pathways for charges and enhances electrical conductivity. Further, morphological analysis confirmed the formation of heterostructured architectures with spherical shapes of uniform nature irrespective of doping level. The findings reveal the carbon nanosphere-modified Co-MOFs as promising electrode materials for supercapacitors with improved electrochemical attributes. Besides energy storage applications, the nanostructured materials are poised to revolutionize photonics, optoelectronics, and other emerging next-generation energy-related technologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-55

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sundriyal, H. Kaur, S. Kumar, S. Mishra, K. Kim, A. Deep, Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications Coord. Chem. Rev. 369 (2018) 15–38.

DOI: 10.1016/j.ccr.2018.04.018

Google Scholar

[2] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev.41 (2012) 797–828.

DOI: 10.1039/c1cs15060j

Google Scholar

[3] O. Flavio, O. Richard, D. Francis, Y. O. George. Optimisation of thermal energy storage systems incorporated with phase change materials for sustainable energy supply: A systematic review. Energy Rep. 10 (2023) 2496-2512.

DOI: 10.1016/j.egyr.2023.09.044

Google Scholar

[4] K. Sel, S. Demirci, E. Meydan, S. Yildiz, O. F. Ozturk, H. Al-Lohedan, N. Sahiner, Benign preparation of metal–organic frameworks of trimesic acid and Cu, Co or Ni for potential sensor applications. J. Electron. Mater. 44 (2015) 136–43.

DOI: 10.1007/s11664-014-3444-3

Google Scholar

[5] R. Shashanka, Effect of Sintering Temperature on the Pitting Corrosion of Ball Milled Duplex Stainless Steel by using Linear Sweep Voltammetry. Anal. Bioanal. Electrochem. 10 (2018) 349-361.

Google Scholar

[6] K. Chaitra, R. Narendra, K. Venkatesh, N. Nagaraju, N. Kathyayini,"Green" carbon with hierarchical three dimensional porous structure derived from-Pongamia pinnata seed oil extract cake and NiCo2O4-Ni (OH) 2/Multiwall carbon nanotubes nanocomposite as electrode materials for high performance asymmetric supercapacitor. J. Power Sources. 356(2017) 212–22.

DOI: 10.1016/j.jpowsour.2017.04.085

Google Scholar

[7] C. Lamiel, D. R. Kumar, J. Shim, Microwave-assisted binder-free synthesis of 3D Ni-Co-Mn oxide nanoflakes@ Ni foam electrode for supercapacitor applications. Chem. Eng. J. 316 (2017) 1091–102.

DOI: 10.1016/j.cej.2017.02.004

Google Scholar

[8] P. Du, Y. Dong, Y. Liu, W. Wei, D. Liu, P. Liu, Fabrication of hierarchical porous nickel-based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 518(2018) 57–68.

DOI: 10.1016/j.jcis.2018.02.010

Google Scholar

[9] Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang, H. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high performance flexible supercapacitors. J. Mater.Chem. A. 4(2016)4, 19078–85.

DOI: 10.1039/c6ta08331e

Google Scholar

[10] A. E. Baumann, D. A. Burns, B. Liu, Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem. 2 (2019)86.

DOI: 10.1038/s42004-019-0184-6

Google Scholar

[11] R. Shashanka, D. Chaira, B. E. Kumara Swamy, Electro catalytic Response of Duplex and Yittria Dispersed Duplex Stainless Steel Modified Carbon Paste Electrode in Detecting Folic Acid Using Cyclic Voltammetry.Int. J. Electrochem. Sci. 10 (2015) 5586–5598.

DOI: 10.1016/s1452-3981(23)17279-8

Google Scholar

[12] S. Li, R. Limbach, L. Longley, A. A. Shirzadi, S. Li, Mechanical properties and processing Techniques of bulk metal–organic framework glasses. J. Am. Chem. Soc. 141 (2019) 1027–1034.

DOI: 10.1021/jacs.8b11357

Google Scholar

[13] D. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. Huang. M. Lee, Robust and conductive two-dimensional metal− organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy. 3 (2018) 30–36.

DOI: 10.1038/s41560-017-0044-5

Google Scholar

[14] V. Adimule, B.C. Yallur, D. Bhowmik, A.H. Jagadeesha Gowda, Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO: ZrO2 nanostructures. J Mater Sci: Mater Electron, 32 (2021) 12164–12181.

DOI: 10.1007/s10854-021-05845-2

Google Scholar

[15] V. Pavitra, B. M. Praveen, G. Nagaraju, R.Shashanka, Energy Storage, Photocatalytic and Electrochemical Nitrite Sensing of Ultrasound-Assisted Stable Ta2O5 Nanoparticles. Top Catal. (2022).

DOI: 10.1007/s11244-021-01553-7

Google Scholar

[16] Q. Tianjie, L. Zibin, Guo. Wenhan, T. Hassina, G, Song, Z. Ruqiang, Metal–Organic Framework-Based Materials for Energy Conversion and Storage. ACS Energy Lett. 5.2 (2020) 520–532.

DOI: 10.1021/acsenergylett.9b02625

Google Scholar

[17] V. Adimule, V. S. Bhat, B. C. Yallur, A. H. J. Gowda, P. D. Pasova, G. Hegde, A. Toghan, Facile synthesis of novel SrO0.5:MnO0.5 bimetallic oxide nanostructure as a high-performance electrode material for supercapacitors. Nanomater. Nanotechnol. 12 (2022)1–14.

DOI: 10.1177/18479804211064028

Google Scholar

[18] W. Kaixi, N. H. Kwun, S. H. Kwan, P. Shaojun, X. Yuxi, Recent progress in metal–organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application. Chem. Sci. 12 (2021) 5737-5766.

DOI: 10.1039/d1sc00095k

Google Scholar

[19] X. Yao, G. Beibei, Z. Jing, H. Chun, M. Ruguang, W. Devi, W. A. Jiacheng, Bimetallic MOF@graphene oxide composite as an efficient bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Dalton Trans. 49 (2020) 5730-5735.

DOI: 10.1039/d0dt00976h

Google Scholar

[20] B. W. Hao, W. L. Xiong. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Science Adv. 3 (2017) 12.

DOI: 10.1126/sciadv.aap9252

Google Scholar

[21] X. Wendan, Z. Qixing, C. Xun, J. Songru, Z. Jiawei, L. Zhiqun, Metal–organic frameworks-derived heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. Nano Energy. 86 (2021) 106073.

DOI: 10.1016/j.nanoen.2021.106073

Google Scholar

[22] H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang, Q. Xu, Metal–Organic-Framework-Derived Co2P Nanoparticle/Multi-Doped Porous Carbon as a Trifunctional Electrocatalyst. Adv. Mater. 32 (2020) 2003649.

DOI: 10.1002/adma.202003649

Google Scholar

[23] Z. Di, F. Hongquan, L. Jilan, S. Kui, G. Xinglong, Novel fusiform core-shell-MOF derived intact metal@carbon composite: An efficient cathode catalyst for aqueous and solid-state Zn-air batteries.J. Energy Chem.64 (2022) 385-394.

DOI: 10.1016/j.jechem.2021.05.011

Google Scholar

[24] F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun. 5 (2014) 5261.

DOI: 10.1038/ncomms6261

Google Scholar

[25] P. Falcaro, S. Furukawa, Doping Light Emitters into Metal–Organic Frameworks. Angew. Chem. Int. Ed, 51 (2012) 8431-8433.

DOI: 10.1002/anie.201203719

Google Scholar

[26] S. M. Rayappa, V. Shamanth, K. Hemanth, R. Shashanka, P.C. Sharath, N.V. Sreekanth, Electrochemical Sensor Applications of Nanoparticle Modified Carbon Paste Electrodes to Detect Various Neurotransmitters: A Review.Appl. Mech. Mater,908 (2022) 69-88.

DOI: 10.4028/p-mizm85

Google Scholar

[27] X. X. Li, S. S. Zheng, L. Jin, Y. Li, P. B. Geng, H. G. Xue, H. Pang, Q. Xu, .Metal-Organic Framework-Derived Carbons for Battery Applications. Adv. Energy Mater. 8 (2018) 1800716.

DOI: 10.1002/aenm.201800716

Google Scholar

[28] M. Chenxu, X. Xihao, G. Yan, Z. Kai, C. Kui, Y. Ke, Y. Jun, C. Dianxue, W. Guiling, X. Panpan, Facile Synthesis of Metal–Organic Framework-Derived CoSe2 Nanoparticles Embedded in the N-Doped Carbon Nanosheet Array and Application for Supercapacitors. ACS Appl. Mater. Interfaces. 12.8 (2020) 9365–9375.

DOI: 10.1021/acsami.9b22606

Google Scholar

[29] M. G. Radhika, B. Gopalakrishna, K. Chaitra, G. B. Lakshminarayana, V. Krishna, M. K. Sudha, N. Kathyayini, Electrochemical studies on Ni, Co & Ni/Co-MOFs for high-performance hybrid supercapacitors. Mater. Res. Express. 7 (2020) 054003.

DOI: 10.1088/2053-1591/ab8d5d

Google Scholar

[30] N. D. Shooto, E. D Dikio, D. Wankasi, L. Sikhwivhilu, Synthesis, Morphology and Lead Ion Adsorption Properties of Metal Organic Frameworks of Copper and Cobalt. Chem Sci J. 6.4(2015) :1

DOI: 10.4172/2150-3494.1000113

Google Scholar

[31] D. Boufades, Y. B. Pemanos, M. Anissa, H. Benmebrouka, L. Doumandji, B. Hamada, Carbone nanospheres synthesis by pyrolysis of crude oil and optimization of parameters growth by response surface methodology (RSM). Elixir Appl. Chem. 78 (2015)29773-29779.

Google Scholar

[32] Z. Songlin, B. Lin, Z. Jiting, Y. Wentian, S. Wei, Z. Zhihong, Cobalt and nitrogen co-doping of porous carbon nanosphere as highly effective catalysts for oxygen reduction reaction and Zn-air battery. Chem. Eng. J. 409 (2021) 128171.

DOI: 10.1016/j.cej.2020.128171

Google Scholar

[33] W. Xuan, R. Ramachandran, C. Zhao, Influence of synthesis temperature on cobalt metal-organic framework (Co-MOF) formation and its electrochemical performance towards supercapacitor electrodes. J Solid State Electrochem. 22 (2018) 3873–3881.

DOI: 10.1007/s10008-018-4096-7

Google Scholar

[34] A.V. Jose, J. Noemie, R. Stefan, E. Franziska, Increasing Exposed Metal Site Accessibility in a Co-MOF-74 Material with Induced Structure-Defects. Front. Mater.6 (2019) 230.

DOI: 10.3389/fmats.2019.00230

Google Scholar

[35] D. Mehdi, D. Fatemeh, R. R. Mohammad, T. J. Mohammad, E.S. Ahmed, .Cobalt metal–organic framework-based ZIF-67 for the trace determination of herbicide molinate by ion mobility spectrometry: investigation of different morphologies. RSC Adv. 11(2021) 2643.

DOI: 10.1039/d0ra09298c

Google Scholar

[36] S. Ina, M. Alexander, T. Marvin, L. Karsten, H. Seungtaik, C. Christian, R. Pascal, C.B. Nadja, P. Thomas, S. Hidetsugu, C. Jurgen, Metal–Organic Framework Co-MOF-74-Based Host–Guest Composites for Resistive Gas Sensing. ACS Appl. Mater. Interfaces. 11.15 (2019) 14175–14181.

DOI: 10.1021/acsami.8b22002

Google Scholar

[37] W. Huawei, Q. Hu, G. Jia, S. Jun, L. Hongfei, Z. Sheng, G. Xiaoyu, Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Compos. B. Eng. 182 (2020) 107498.

DOI: 10.1016/j.compositesb.2019.107498

Google Scholar

[38] F. T. Alshorifi, S. M. El Dafrawy, A. I. Ahmed, Fe/Co-MOF Nanocatalysts: Greener Chemistry Approach for the Removal of Toxic Metals and Catalytic Applications. ACS Omega. 7.27 (2022) 23421-23444.

DOI: 10.1021/acsomega.2c01770

Google Scholar

[39] S. Yujia, Z. Hong-Cai, Recent progress in the synthesis of metal–organic frameworks. Sci. Technol. Adv. Mater. 16 (2015) 054202.

Google Scholar

[40] Y. Zhang, C. H. Chang, Metal–Organic Framework Thin Films: Fabrication, Modification, and Patterning. Processes. 8.3 (2020) 377.

DOI: 10.3390/pr8030377

Google Scholar

[41] G. Zhi-Yuan, W. Gen, Y. Xiu-Ping, MOF-5 Metal−Organic Framework as Sorbent for In-Field Sampling and Preconcentration in Combination with Thermal Desorption GC/MS for Determination of Atmospheric Formaldehyde. Anal. Chem. 82.4 (2010) 1365–1370.

DOI: 10.1021/ac902450f

Google Scholar

[42] M. Ahmed, Y. M. Al-Hadeethi, A. Alshahrie, A.T Kutbee, E.R. Shaaban, A.F. Al-Hossainy, Thermal Analysis of a Metal–Organic Framework ZnxCo1-X-ZIF-8 for Recent Applications. Polymers. 13 (2021) 4051.

DOI: 10.3390/polym13224051

Google Scholar

[43] S. Sangeetha, G. Krishnamurthy, S. Foro, Energy Storage Applications of Cobalt and Manganese Metal–Organic Frameworks. J Inorg Organomet Polym Mater. 30 (2020) 4792–4802.

DOI: 10.1007/s10904-020-01593-8

Google Scholar

[44] M. Stefanos, M. P Roger,T. K. Nguyen, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale.10 (2018) 12871-12934.

DOI: 10.1039/c8nr02278j

Google Scholar

[45] G. Aayush, K. Rajpal, K. B. Loveleen, Facile synthesis of carbon nanospheres from saccharides for photocatalytic applications. SN Applied Sciences.1 (2019) 1169.

Google Scholar