[1]
International Energy Agency. CO2 emissions from fuel combustion-highlights. (2012).
Google Scholar
[2]
International Energy Agency. 20 Years of Carbon Capture and Storage. (2016).
Google Scholar
[3]
International Energy Agency. CO2 Capture and Storage: A Key Carbon Abatement Option. (2008).
DOI: 10.1787/9789264041417-en
Google Scholar
[4]
S. Bachu. CO2 storage in geological media: role, means, status and barriers to deployment. Progress in Energy and Combustion Science. 34(2008), 254-273.
DOI: 10.1016/j.pecs.2007.10.001
Google Scholar
[5]
L. Smith, M. Billingham, C.H. Lee, D.Z. Milanovic, G. Lunt. CO2 Sequestration Wells-the Lifetime Integrity Challenge. Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers. (2010).
DOI: 10.2118/136160-ms
Google Scholar
[6]
M.X. Bai, Z.C. Zhang, X.F. Fu. A review on well integrity issues for CO2 geological storage and enhanced gas recovery. Renewable and Sustainable Energy Reviews. 59(2016), 920-926.
DOI: 10.1016/j.rser.2016.01.043
Google Scholar
[7]
A. Bois, M. Vu, S. Ghabezloo, J. Sulem, A. Garnier, J. Laudet. Cement Sheath Integrity for CO2 Storage–An Integrated Perspective. Energy Procedia. 37(2013), 5628-5641.
DOI: 10.1016/j.egypro.2013.06.485
Google Scholar
[8]
B.G. Kutchko. Effect of CO2 on the Integrity of Well Cement under Geologic Sequestration Conditions, PhD thesis, Carnegie Mellon University, (2008).
Google Scholar
[9]
API Specification 10A. Specification for cements and materials for well cementing. American Petroleum Institute. (2010).
Google Scholar
[10]
H.F.W. Taylor. Cement Chemistry. Thomas Telford, (1997).
Google Scholar
[11]
O. Omosebi, H. Maheshwari, R. Ahmed, S. Shah, S. Osisanya, S. Hassani, G. DeBruijn, W. Cornell, D. Simon. Degradation of well cement in HPHT acidic environment: Effects of CO2 concentration and pressure. Cement and Concrete Composites. 74(2016), 54-70.
DOI: 10.1016/j.cemconcomp.2016.09.006
Google Scholar
[12]
B. Šavija, M. Luković. Carbonation of cement paste: Understanding, challenges, and opportunities. Construction and Building Materials. 117(2016), 285-301.
DOI: 10.1016/j.conbuildmat.2016.04.138
Google Scholar
[13]
B.G. Kutchko, B.R. Strazisar, G.V. Lowry, D.A. Dzombak, N. Thaulow. Rate of CO2 Attack on Hydrated Class H Well Cement under Geologic Sequestration Conditions. Environmental Science & Technology. 42(2008), 6237-6242.
DOI: 10.1021/es800049r
Google Scholar
[14]
A. Duguid. The effect of carbonic acid on well cements, PhD thesis, Princeton University, (2006).
Google Scholar
[15]
A. Duguid, G.W. Scherer. Degradation of oilwell cement due to exposure to carbonated brine. International Journal of Greenhouse Gas Control. 4(2010), 546-560.
DOI: 10.1016/j.ijggc.2009.11.001
Google Scholar
[16]
B.G. Kutchko, B.R. Strazisar, D.A. Dzombak, G.V. Lowry, N. Thaulow. Degradation of Well Cement by CO2 under Geologic Sequestration Conditions. Environmental Science & Technology. 41(2007), 4787-4792.
DOI: 10.1021/es062828c
Google Scholar
[17]
Q. Li, Y.M. Lim, Y. Jun. Effects of Sulfate during CO2 Attack on Portland Cement and Their Impacts on Mechanical Properties under Geologic CO2 Sequestration Conditions. Environmental Science & Technology. 49(2015), 7032-7041.
DOI: 10.1021/es506349u
Google Scholar
[18]
H. Ghorbanbeigi, I. Yurtdas, W.Q. Shen, J.F. Shao. Influences of chemical leaching on elastic and plastic properties of cement-based materials. European Journal of Environmental and Civil Engineering. 21(2016), 696-711.
DOI: 10.1080/19648189.2016.1150892
Google Scholar
[19]
G. Rimmelé, V. Barlet-Gouédard, O. Porcherie, B. Goffé, F. Brunet. Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids. Cement and Concrete Research. 38(2008), 1038-1048.
DOI: 10.1016/j.cemconres.2008.03.022
Google Scholar
[20]
S. Bachu, T.L. Watson. Review of failures for wells used for CO2 and acid gas injection in Alberta. Canada Energy Procedia. 1(2009), 3531-3537.
DOI: 10.1016/j.egypro.2009.02.146
Google Scholar
[21]
S. Carroll, J.W. Carey, D. Dzombak, N.J. Huerta, L. Li, T. Richard, W. Um, S.D.C. Walsh, L. Zhang. Review: Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments. International Journal of Greenhouse Gas Control. 49(2016), 149-160.
DOI: 10.1016/j.ijggc.2016.01.010
Google Scholar
[22]
M. Zhang, S. Bachu. Review of integrity of existing wells in relation to CO2 geological storage: What do we know? International Journal of Greenhouse Gas Control. 5(2011), 826-840.
DOI: 10.1016/j.ijggc.2010.11.006
Google Scholar
[23]
V. Zivica, V. Szabo. The behaviour of cement composite under compression load at sulphate attack. Cement and Concrete Research. 24(1994), 1475-1484.
DOI: 10.1016/0008-8846(94)90161-9
Google Scholar
[24]
U. Schneider, S.W. Chen. The Chemomechanical Effect and the Mechanochemical Effect on High-Performance Concrete Subjected to Stress Corrosion. Cement and Concrete Research. 28(1998), 509-522.
DOI: 10.1016/s0008-8846(98)00015-5
Google Scholar
[25]
K. Werner, Y. Chen, I. Odler. Investigations on stress corrosion of hardened cement pastes. Cement and Concrete Research. 30(2000), 1443-1451.
DOI: 10.1016/s0008-8846(00)00328-8
Google Scholar
[26]
C. Lu, R. Liu. Predicting Carbonation Depth of Prestressed Concrete under Different Stress States Using Artificial Neural Network. Advances in Artificial Neural Systems. 2009 (2010), 1-8.
DOI: 10.1155/2009/193139
Google Scholar
[27]
Y.M. Tu, Z.T. Lv. Experiment and research of prestressed concrete structure in carbonation environment. Journal of Southeast University (Natural Science Edition). 33(2003), 573-576. (in Chinese).
Google Scholar
[28]
Q.L. Shi. Experimental study on carbonation and durability of prestressed concrete, Master thesis, Central South University, 2008. (in Chinese).
Google Scholar
[29]
U. Schneider, S.W. Chen. Deterioration of high-performance concrete subjected to attack by the combination of ammonium nitrate solution and flexure stress. Cement and Concrete Research. 35 (2005), 1705-1713.
DOI: 10.1016/j.cemconres.2004.11.011
Google Scholar
[30]
C. Ai, J. Li, Z.P. Li, Z.C. Zhang, D.F. Chen. Research on Cement Sheath Stress Integrity of CO2 Buried Well in the Process of Injection. Science Technology and Engineering (2013), 2057-2061. (in Chinese).
Google Scholar
[31]
J. McDaniel, N.K. Combs, L. Watters. Zonal Isolation Assurance: Relating Cement Mechanical Properties to Mechanical Durability. In Unconventional Resources Technology Conference, (2014).
DOI: 10.15530/urtec-2014-1913405
Google Scholar
[32]
T. Gu, X.Y. Guo, Z.Y. Li, X.W. Cheng, X.X. Fan, A. Korayem, W.H. Duan. Coupled effect of CO2 attack and tensile stress on well cement under CO2 storage conditions. Construction and Building Materials. 130(2017), 92-102.
DOI: 10.1016/j.conbuildmat.2016.10.117
Google Scholar
[33]
API RP 10B.Recommended Practice for Testing Well Cements. American Petroleum Institute. (2013).
Google Scholar
[34]
G.D. Yang. Study on the mechanism of carbon dioxide geological storage in Ordos basin.2015. (in Chinese).
Google Scholar
[35]
C.T. Lv, Y.S. Wang, X.F. Wang. F. Zheng, L. Mei. Corrosion resistant materials selection of OCTG in a simulated CCS project environment. Corrosion & Protection. 35(2014), 443-445. (in Chinese).
Google Scholar
[36]
P. Rossi, J.L. Tailhan, F. Le Maou. Creep strain versus residual strain of a concrete loaded under various levels of compressive stress. Cement and Concrete Research. 51 (2013), 32-37.
DOI: 10.1016/j.cemconres.2013.04.005
Google Scholar
[37]
A. Oyibo, M. Radonjic. Experimental Investigation of the Impact of Compression on the Petro-Physical and Micromechanical Properties of Wellbore Cement Containing Salt. Open Journal of Composite Materials. 06(2016), 59-68.
DOI: 10.4236/ojcm.2016.63006
Google Scholar
[38]
V. Barlet-Gouédard, G. Rimmelé, B. Goffé, O. Porcherie. Well Technologies for CO2 Geological Storage: CO2-Resistant Cement. Oil & Gas Science and Technology - Rev. IFP. 62(2007), 325-334.
DOI: 10.2516/ogst:2007027
Google Scholar
[39]
Q.Y. Li, Y.M. Lim, K.M. Flores, K. Kranjc, Y.S. Jun. Chemical reactions of Portland cement with aqueous CO2 and their impacts on cement's mechanical properties under geologic CO2 sequestration conditions. Environmental Science & Technology. 49(2015), 6335-6343.
DOI: 10.1021/es5063488
Google Scholar
[40]
A. Hidalgo, C. Domingo, C. Garcia, S. Petit, C. Andrade, C. Alonso. Microstructural changes induced in Portland cement-based materials due to natural and supercritical carbonation. Journal of Materials Science. 43 (2008), 3101-3111.
DOI: 10.1007/s10853-008-2521-5
Google Scholar
[41]
K. Abid, R. Gholami, P. Choate, B.H. Nagaratnam. A review on cement degradation under CO2-rich environment of sequestration projects. International Journal of Greenhouse Gas Control. 27 (2015), 1149-1157.
DOI: 10.1016/j.jngse.2015.09.061
Google Scholar
[42]
M. Choinska, A. Khelidj, G. Chatzigeorgiou, G. Pijaudier-Cabot. Effects and interactions of temperature and stress-level related damage on permeability of concrete. Cement and Concrete Research. 37(2007), 79-88.
DOI: 10.1016/j.cemconres.2006.09.015
Google Scholar
[43]
M. Hoseini. Effect of Compressive Loading on Transport Properties of Cement-Based Materials, PhD thesis, University of Alberta (Canada), (2013).
Google Scholar
[44]
M. Hoseini, V. Bindiganavile, N. Banthia. The effect of mechanical stress on permeability of concrete: A review. Cement and Concrete Composites. 31(2009), 213-220.
DOI: 10.1016/j.cemconcomp.2009.02.003
Google Scholar
[45]
C.F. Xu, S.Y. Cao, S.L. Fan, Q.W. Du. Experimental study on the concrete neutralization under stress and carbonization and acid rain. CHINA CIVIL ENGINEERING JOURNAL. 47(2014), 64-70. (in Chinese).
Google Scholar
[46]
K.M. Nemati, P.J. Monteiro, K.L. Scrivener, Analysis of compressive stress-induced cracks in concrete. ACI Materials Journal. 95(1998), 617-630.
Google Scholar
[47]
Y. Yao, L. Wang, F.H. Wittmann, N. De Belie, E. Schlangen, H.E. Alava, Z. Wang, S. Kessler, C. Gehlen, B.M. Yunus, J. Li. Test methods to determine durability of concrete under combined environmental actions and mechanical load: final report of RILEM TC 246-TDC. Materials and Structures, 50(2017), 123.
DOI: 10.1617/s11527-016-0983-5
Google Scholar
[48]
H. Xu, Y.X. Zhao, L. Cui, B. Xu. Sulphate attack resistance of high-performance concrete under compressive loading. Journal of Zhejiang University SCIENCE A, 14(2013), 459-468.
DOI: 10.1631/jzus.a1300067
Google Scholar
[49]
C.C. Lim, N. Gowripalan, V. Sirivivatnanon. Microcracking and chloride permeability of concrete under uniaxial compression. Cement and Concrete Composites. 22(2000), 353-360.
DOI: 10.1016/s0958-9465(00)00029-9
Google Scholar
[50]
J.W. Mcever, W.K. Godfrey, U.S. Patent 3,183,971. (1965).
Google Scholar
[51]
S.B. Liu, Y.C. Wu, C.Q. Wang, Y. Huang, Y.C Fan, G.Q. Tian. Study on prestressing cementing technology and its application. Drilling & Production Technology. 1(2009), 32. (in Chinese).
Google Scholar