Improvement of Process Parameters Calculation for Coil Rolling at the Steckel Mill

Article Preview

Abstract:

The mathematical model of hot-rolled coil rolling at the Steckel mill (Ferriera Valsider SpA) has been thoroughly investigated in the paper. There has been made a verification of the developed model to use it for the rolling technology design. The influence of the stand stiffness has also been taken into account. When simulating rolling temperature conditions, an average error was within the range from 8.27 to 9.11% at the mill 3170 and from 0.003% to-0.92% at the mill 1780. When simulating rolling force, an average error was within the range from 0.5% to 5.7% at the mill 3170 and from-4.89 to 6.59% at the mill 1780. The equation has been obtained, and the comparison of calculated stands stiffness has been made at the mill 3170 and 1780.There has been determined influence on the actual measurement of the pre-treatment temperature for the feed processing by descaler, which results in significant errors compared to the calculation results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

609-614

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Kukhar, O. Kurpe, E. Klimov, E. Balalayeva, V. Dragobetskii, Improvement of the Method for Calculating the Metal Temperature Loss on a Coilbox Unit at The Rolling on Hot Strip Mills, International Journal of Engineering & Technology, 7(4.3) (2018) 35-39.

DOI: 10.14419/ijet.v7i4.3.19548

Google Scholar

[2] J.G. Lenard, Mathematical and Physical Modelling of the Flat Rolling Process, Primer on Flat Rolling, Elsevier Ltd, 3 (2007) 36-98.

DOI: 10.1016/b978-008045319-4/50005-x

Google Scholar

[3] P. Mantyla, R. Korhonen, N-G. Jonsson, Improved Thickness and Shape Accuracy with Advanced Pass Scheduling in Plate Rolling, Journal of Materials Processing Technology, 34 (1992) 255-263.

DOI: 10.1016/0924-0136(92)90115-9

Google Scholar

[4] S. Yue, The Mathematical Modelling of Hot Rolling of Steel, Metal Forming Science and Practice, Published by Elsevier Science Ltd, 11 (2002) 213-226.

DOI: 10.1016/b978-008044024-8/50011-4

Google Scholar

[5] L.V. Radionova, A.D. Chernyshev, R.A. Lisovskiy, Interactive Educational System – Virtual Simulator Sheet Rolling,, Procedia Engineering, 206 (2017) 512-518.

DOI: 10.1016/j.proeng.2017.10.509

Google Scholar

[6] L.M. Galantucci, L. Tricarico, Thermo-mechanical simulation of a rolling process with an FEM approach, Journal of Materials Processing Technology, 92-93 (1999) 494-501.

DOI: 10.1016/s0924-0136(99)00242-3

Google Scholar

[7] U. Hanoglu, B. Šarler, Multi-pass hot-rolling simulation using a meshless method, Computers and Structures, 194 (2018) 1-14.

DOI: 10.1016/j.compstruc.2017.08.012

Google Scholar

[8] V. Kukhar, A. Prysiazhnyi, E. Balalayeva, O. Anishchenko, Designing of induction heaters for the edges of pre-rolled wide ultrafine sheets and strips correlated with the chilling end-effect, Modern Electrical and Energy System, MEES'2017, IEEE, Kremenchuk, (2017) 404-407.

DOI: 10.1109/mees.2017.8248945

Google Scholar

[9] Matruprasad Rout, Surjya K. Pal, Shiv B. Singh, Finite element simulation of a cross rolling process, Journal of Manufacturing Processes, 24 (2016) 283-292.

DOI: 10.1016/j.jmapro.2016.09.012

Google Scholar

[10] D.M. Lee, Applications to improve rolling force prediction ability in a plate mill, Automation in Mining, Mineral and Metal Processing, IFAC Proceedings Volumes, 37(15) (2004) 65-70.

DOI: 10.1016/s1474-6670(17)31001-7

Google Scholar

[11] W.Y.D. Yuen, A. Dixon, D.N. Nguyen, The modelling of the mechanics of deformation in flat rolling, Journal of Materials Processing Technology, 60 (1996) 87-94.

DOI: 10.1016/0924-0136(96)02312-6

Google Scholar

[12] Jin-ling Zhang, Zhen-shan Cui, Prediction of Velocity and Deformation Fields During Multipass Plate Hot Rolling by Novel Mixed Analytical-Numerical Method, Journal of Iron and Steel Research, International, 18(7) (2011) 20-27.

DOI: 10.1016/s1006-706x(11)60085-x

Google Scholar

[13] Min-ting Wang, Xin-liang Zang, Xue-tong Li, Feng-shan Du, Finite Element Simulation of Hot Strip Continuous Rolling Process Coupling Microstructural Evolution, Journal of Iron and Steel Research, International, 14(3) (2007) 30-36.

DOI: 10.1016/s1006-706x(07)60039-9

Google Scholar

[14] Xian-lei Hu, Zhong Zhao, Jun Wang, Zhao-dong Wang, Xiang-hua Liu, Guo-dong Wang, Optimization of Holding Temperature and Holding Thickness for Controlled Rolling on Plate Mill, Journal of Iron and Steel Research, International, 13(3) (2006) 21-25.

DOI: 10.1016/s1006-706x(06)60055-1

Google Scholar

[15] Xiang-dong Qi, Tao Wang, Hong Xiao, Optimization of Pass Schedule in Hot Strip Rolling, Journal of Iron and Steel Research, International, 19(8) (2012) 25-28.

DOI: 10.1016/s1006-706x(12)60135-6

Google Scholar

[16] V. Kukhar, V. Artiukh, A. Prysiazhnyi, A. Pustovgar, Experimental Research and Method for Calculation of Upsetting-with-Buckling, Load at the Impression-Free (Dieless) Preforming of Workpiece, E3S Web of Conference, 33 (2018) 02031.

DOI: 10.1051/e3sconf/20183302031

Google Scholar

[17] A.H. Prysiazhnyi, V.V. Kukhar, E.Yu. Balalayeva, Method for Determining the Optimum Counter-Flexing Force of Working Rolls during Sheet Rolling, Solid State Phenomena, 284 (2018) 416-424.

DOI: 10.4028/www.scientific.net/ssp.284.416

Google Scholar

[18] A.A. Minaev, A.G. Nosanev, E.N. Smirnov, P.F. Bublik, V.V. Shishkevich, Unit for accelerated cooling of reinforcement bars in the line of a 330 mill after deformation, Metallurgist, (1990) 32.

DOI: 10.1007/bf00773047

Google Scholar