Building Materials as Potential Emission Sources of VOC in the Indoor Environment of Buildings

Article Preview

Abstract:

People spend most of their time in various indoor spaces and their health is exposed to different kinds of air pollutants. Volatile organic compounds (VOCs) belong to a group of chemical substances polluting the indoor environment. They come into the interior of buildings mainly from internal sources in the form of building materials, flooring, composite wood products, adhesives and other consumer products. Their presence in indoor air is monitored, due to their carcinogenic and mutagenic effects on human health. Many studies of indoor environment contaminated by VOC have been published during the last years. The present study provides general overview of the occurrence and emission sources of VOCs in the indoor environment of different types of buildings. The most frequently monitored indoor organic pollutants in terms of their occurrence and health risk are BTEX (benzene, toluene, ethylbenzene and xylenes), terpenes (α-pinene and d-limonene) and aldehydes (formaldehyde, acetaldehyde and benzaldehyde). Their concentrations in different indoor environments are variable and depend on factors such as emission characteristics of sources, microclimatic and ventilation conditions. Formaldehyde and toluene levels increased significantly with increasing room temperature. Benzene enters the indoor environment of buildings from external sources, especially from traffic or industrial areas. Formaldehyde, α-pinene and d-limonene originate from indoor sources as a part of building materials, furniture and household products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-80

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Rösch, T. Kohajda, S. Röder, M. von Bergen, U. Schlink. Relationship between sources and patterns of VOCs in indoor air. Atmosph. Poll. Res. 5(1) (2014) 129-137.

DOI: 10.5094/apr.2014.016

Google Scholar

[2] I. Mujan, A. S. Anđelković, V. Munćan, M. Kljajić, D. Ružić. Influence of indoor environmental quality on human health and productivity-A review. J. Clean. Prod. 217, (2019) 646-657.

DOI: 10.1016/j.jclepro.2019.01.307

Google Scholar

[3] E. D. L. Patino, J. A. Siegel. Indoor environmental quality in social housing: A literature review. Build. Env.131 (2018) 231-241.

DOI: 10.1016/j.buildenv.2018.01.013

Google Scholar

[4] L. Lucattini, G. Poma, A. Covaci, J. de Boer, M. H. Lamoree, P. E. Leonards. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chem. 201 (2018) 466-482.

DOI: 10.1016/j.chemosphere.2018.02.161

Google Scholar

[5] N. Mishra, J. Bartsch, G. A. Ayoko, T. Salthammer, L. Morawska. Volatile organic compounds: characteristics, distribution and sources in urban schools. Atmosph. Env. 106 (2015) 485-491.

DOI: 10.1016/j.atmosenv.2014.10.052

Google Scholar

[6] Y. Huang, T. Su, L. Wang, N. Wang, Y. Xue, W. Dai, S. Ch. Lee, J. Cao, S. S. Ho. Evaluation and characterization of volatile air toxics indoors in a heavy polluted city of northwestern China in wintertime. Sci. Tot. Env. 662 (2019) 470-480.

DOI: 10.1016/j.scitotenv.2019.01.250

Google Scholar

[7] E. D. Vicente, J. P. Ribeiro, D. Custódio, C. A. Alves. Assessment of the indoor air quality in copy centres at Aveiro, Portugal. Air Qual. Atmosph. Heal. 10(2) (2017) 117-127.

DOI: 10.1007/s11869-016-0401-8

Google Scholar

[8] C. Zhou, Y. Zhan, S. Chen, M. Xia, C. Ronda, M. Sun, H. Chen, X. Shen. Combined effects of temperature and humidity on indoor VOCs pollution: Intercity comparison. Build. Env. 121 (2017) 26-34.

DOI: 10.1016/j.buildenv.2017.04.013

Google Scholar

[9] W. Ye, X. Zhang, J. Gao, G. Cao, X. Zhou, X. Su. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review. Sci. Tot. Env. 586 (2017) 696-729.

DOI: 10.1016/j.scitotenv.2017.02.047

Google Scholar

[10] J. Xu, M. Szyszkowicz, B. Jovic, S. Cakmak, C. C. Austin, J. Zhu. Estimation of indoor and outdoor ratios of selected volatile organic compounds in Canada. Atmosph. Env. 141 (2016) 523-531.

DOI: 10.1016/j.atmosenv.2016.07.031

Google Scholar

[11] M. A. El-Hashemy, H. M. Ali. Characterization of BTEX group of VOCs and inhalation risks in indoor microenvironments at small enterprises. Sci. Tot. Env. 645 (2018) 974-983.

DOI: 10.1016/j.scitotenv.2018.07.157

Google Scholar

[12] M. A. Bari, W. B. Kindzierski, A. J. Wheeler, M. È. Héroux, L. A. Wallace, Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Build. Env. 90 (2015) 114-124.

DOI: 10.1016/j.buildenv.2015.03.023

Google Scholar

[13] C. Norris, L. Fang, K. K. Barkjohn, D. Carlson, Y. Zhang, J. Mo, Z. Li, J. Zhang, X. Cui, J. J. Schauer, A. Davis, M. Black, M. H. Bergin. Sources of volatile organic compounds in suburban homes in Shanghai, China, and the impact of air filtration on compound concentrations. Chem. 231 (2019) 256-268.

DOI: 10.1016/j.chemosphere.2019.05.059

Google Scholar

[14] S. Uchiyama, T. Tomizawa, A. Tokoro, M. Aoki, M. Hishiki, T. Yamada, R. Tanaka, H. Sakamoto, T. Yoshida, K. Bekki, Y. Inaba, H. Nakagome, N. Kunugita, Gaseous chemical compounds in indoor and outdoor air of 602 houses throughout Japan in winter and summer. Env. Res. 137 (2015) 364-372.

DOI: 10.1016/j.envres.2014.12.005

Google Scholar

[15] V. Földváry, G. Bekö, S. Langer, K. Arrhenius, D. Petráš. Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia. Build. Env. 122 (2017) 363-372.

DOI: 10.1016/j.buildenv.2017.06.009

Google Scholar

[16] V. Kaunelienė, T. Prasauskas, E. Krugly, I. Stasiulaitienė, D. Čiužas, L. Šeduikytė, D. Martuzevičius. Indoor air quality in low energy residential buildings in Lithuania. Build. Env. 108 (2016) 63-72.

DOI: 10.1016/j.buildenv.2016.08.018

Google Scholar

[17] C. R. O. Nunes, B. Sánchez, C. E. Gatts, C. M. de Almeida, M. C. Canela. Evaluation of volatile organic compounds coupled to seasonality effects in indoor air from a commercial office in Madrid (Spain) applying chemometric techniques. Sci. Tot. Env. 650 (2019) 868-877.

DOI: 10.1016/j.scitotenv.2018.09.095

Google Scholar

[18] C. Mandin, M. Trantallidi, A. Cattaneo, N. Canha, V. G. Mihucz, T. Szigeti, R. Mabilia, E. Perreca, A. Spinazzè, S. Fossati, Y. Kluizenaar, E. Cornelissen, I. Sakellaris, D. Saraga, O. Hänninen, E. De Oliveira Fernandes, G. Ventura, P. Wolkoff, J. Bartzis. Assessment of indoor air quality in office buildings across Europe–The OFFICAIR study. Sci. Tot. Env. 579 (2017) 169-178.

DOI: 10.1016/j.scitotenv.2016.10.238

Google Scholar

[19] F. Villanueva, A. Tapia, S. Lara, M. Amo-Salas. Indoor and outdoor air concentrations of volatile organic compounds and NO2 in schools of urban, industrial and rural areas in Central-Southern Spain. Sci. Tot. Env. 622 (2018) 222-235.

DOI: 10.1016/j.scitotenv.2017.11.274

Google Scholar

[20] N. B. Goodman, A. Steinemann, A. J. Wheeler, P. J. Paevere, M. Cheng, S. K. Brown. Volatile organic compounds within indoor environments in Australia. Build. Env. 122 (2017) 116-125.

DOI: 10.1016/j.buildenv.2017.05.033

Google Scholar

[21] J. Madureira, I. Paciência, J. Rufo, M. Severo, E. Ramos, H. Barros, E. de Oliveira Fernandes. Source apportionment of CO2, PM10 and VOCs levels and health risk assessment in naturally ventilated primary schools in Porto, Portugal. Build. Env. 96 (2016) 198-205.

DOI: 10.1016/j.buildenv.2015.11.031

Google Scholar

[22] J. A. Becerra, J. Lizana, M. Gil, A. Barrios-Padura, P. Blondeau, R. Chacarteguia. Identification of potential indoor air pollutants in schools. J. Clean. Prod. (2019).

DOI: 10.1016/j.jclepro.2019.118420

Google Scholar

[23] D. Norbäck, J. H. Hashim, Z. Hashim, F. Ali. Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue. Sci. Tot. Env. 592 (2017) 153-160.

DOI: 10.1016/j.scitotenv.2017.02.215

Google Scholar