Crystallographic Phase Composition and Structural Analysis of Ti-Ni-Fe Shape Memory Alloy by Synchrotron Diffraction

Article Preview

Abstract:

The preferred crystallographic orientation (i.e. texture) and the non-transformed austenite can cause serious systematic errors in the structural study of the R-phase in 50.75at.%Ti- 47.75at.%Ni-1.50at.%Fe (hereafter referred to as Ti-Ni-Fe ternary) shape memory alloy. The crystal structure refinement of R-phase synchrotron high resolution powder diffraction (SRD) data using Rietveld refinement with generalized spherical harmonic (GSH) description for preferred orientation correction showed that the sample consists of minor cubic phase and the space group was 3 P [1]. The objective of the present paper is to study the crystallographic phase composition and crystal structure refinement of SRD data of trigonal R-phase martensite and monoclinic (B19¢) martensite in Ti-Ni-Fe ternary alloy during thermal cycling using the GSH description.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 105)

Pages:

139-144

Citation:

Online since:

July 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Sitepu: Texture and Microstructures Vol. 35 (2003), p.185.

Google Scholar

[2] K. Otsuka and C.M. Wayman: Shape Memory Materials (Cambridge University Press, Cambridge, 1998).

Google Scholar

[3] T. Hara, T. Ohba and K. Otsuka: J. de Physique III Vol. 5 (1995), p.641.

Google Scholar

[4] T. Hara, T. Ohba, E. Okunishi and K. Otsuka: Mater. Trans. JIM Vol. 38 (2007), p.11.

Google Scholar

[5] H. Sitepu: J. Appl. Cryst. Vol. 35 (2002) p.274.

Google Scholar

[6] H.J. Bunge: Texture Analysis in Materials Science (Butterworths, London 1982).

Google Scholar

[7] N.C. Popa: J. Appl. Cryst. Vol. 25 (1992), p.611.

Google Scholar

[8] R.B. Von Dreele: J. Appl. Cryst. Vol. 30 (1997) p.517.

Google Scholar

[9] H. Sitepu, W.W. Schmahl and R.B. Von Dreele: Appl. Phys. A Vol. 74 (2003), p. S1676.

Google Scholar

[10] H. Sitepu, W.W. Schmahl and J.K. Stalick: Appl. Phys. A Vol. 74 (2003), p. S1919.

Google Scholar

[11] A.C. Larson and R.B. Von Dreele: General structure analysis system (GSAS) (Los Alamos National Laboratory Report LAUR, 2000).

Google Scholar

[12] N.C. Popa: J. Appl. Crys. Vol. 31 (1998), p.176.

Google Scholar

[13] P.W. Stephens: J. Appl. Cryst. Vol. 32 (1999), p.281.

Google Scholar

[14] D. Schryvers and P.L. Potapov: Materials Trans. Vol. 43 No. 5 (2002), p.774.

Google Scholar