Flatness Based Inductive Reheating of A356 Billets into the Semi-Solid State

Abstract:

Article Preview

An important step in the processing of semi-solid metals is the inductive re-heating of the feedstock material. The heating should lead to an uniform billet temperature in order to obtain good forming results. The billet is supposed to be heated to the target temperature as fast as possible and at the same time it must be guaranteed, that the outer area of the billet does not melt prematurely. Conventionally the open-loop trajectories consist of simple power over time diagrams and are generated by extensive experiments. By using an open-loop control scheme it is possible to chose a desired trajectory for the middle axis temperature of the billet which respects the given constraint on the heating process. By taking advantage of the flatness property of the system, an open loop trajectory for the coil current can be calculated which ensures the desired behavior of the axis temperature. The shape of the trajectory is determined by the shape of the desired trajectory and the temperature dependent material properties, which have to be known with the needed accuracy. The losses of the converter and induction coil are estimated online so that the induced power is known. The trajectory ensures that the billet is heated to a temperature just below the solidus temperature without overheating of the billet’s surface and with a very homogeneous temperature distribution. The Experiments have been conducted using A356 aluminum alloy.

Info:

Periodical:

Solid State Phenomena (Volumes 116-117)

Edited by:

C.G. Kang, S.K. Kim and S.Y. Lee

Pages:

766-770

DOI:

10.4028/www.scientific.net/SSP.116-117.766

Citation:

A. Schönbohm et al., "Flatness Based Inductive Reheating of A356 Billets into the Semi-Solid State", Solid State Phenomena, Vols. 116-117, pp. 766-770, 2006

Online since:

October 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.