Low Temperature Plasma Surface Alloying of Austenitic Stainless Steels

Article Preview

Abstract:

This paper gives a brief review on the three low temperature plasma surface alloying processes that have been developed in recent years to engineer the surfaces of austenitic stainless steels to achieve much enhanced surface hardness and wear resistance, without compromising their corrosion resistance. These include low temperature plasma nitriding, low temperature plasma carburizing and the newly developed hybrid process involving the simultaneous incorporation of nitrogen and carbon to form a dual layer structure. The processing, structural and property characteristics of each process are discussed briefly in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 118)

Pages:

85-90

Citation:

Online since:

December 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.L. Zhang and T. Bell, Surf. Eng. Vol. 1 (1985) p.131.

Google Scholar

[2] K. Ichii, K. Fujimura and T. Takase, Techn. Rep. Kansai Univ. Vol. 27 (1986), p.135.

Google Scholar

[3] A. Leyland, D.B. Lewis, P.R. Stevenson and A. Matthews, Surf. Coat. Tech. Vol. 62 (1993) p.608.

Google Scholar

[4] E. Menthe, K-T. Rie, J.W. Schultze and S. Simson, Surf. Coat. Tech. Vol. 74-75 (1995) p.412.

Google Scholar

[5] Y. Sun, T. Bell, Z. Kolosvary and J. Flis, Heat Treatment of Metals, Vol. 26(1) (1999) p.9.

Google Scholar

[6] N. Yasumaru, Mater. Trans. JIM, Vol. 39 (1998) p.1046.

Google Scholar

[7] R. Wei, B. Shogrin, P.J. Wilbur, O. Ozturk, P.L. Williamson, I. Ivanov and E. Metin, J. Trib. Vol. 116 (1994) p.870.

Google Scholar

[8] Y. Sun, X.Y. Li and T. Bell, J. Mater. Sci. Vol. 34 (1999) p.4793.

Google Scholar

[9] L. Wang, Applied Surface Science, Vol. 211 (2003) p.308.

Google Scholar

[10] T. Bell and Y. Sun, Heat Treatment of Metals, Vol. 29 (3) (2002) p.57.

Google Scholar

[11] Y. Sun and T. Bell, Wear, Vol. 218 (1998) p.34.

Google Scholar

[12] D. B. Lewis, A. Leyland, P. R. Stevenson, J. Cawley and A. Matthews, Surf. Coat. Tech. Vol. 60 (1993) p.416.

Google Scholar

[13] Y. Sun, X.Y. Li and T. Bell, Surf. Eng. Vol. 15 (1999) p.49.

Google Scholar

[14] Y. Sun, X.Y. Li and T. Bell, Mater. Sci. Tech. Vol. 15 (1999) p.1171.

Google Scholar

[15] S. Thaiwatthana, X.Y. Li, H. Dong and T. Bell, Surf. Eng. Vol. 18 (2002) p.433.

Google Scholar

[16] C. Blawert, H. Kalvelage, B.L. Mordike, G.A. Collins, K.T. Short, Y. Jiraskova, and O. Schneeweiss, Surf. Coat. Tech. Vol. 136 (2001) p.181.

Google Scholar

[17] Y. Sun and T. Bell, Wear 253 (2002) 689-693.

Google Scholar

[18] A. Leyland, D.B. Lewis, P.R. Stevenson and A. Matthews, Surf. Coat. Tech., Vol. 62 (1993) p.608.

Google Scholar

[19] M. Tsujikawa, D. Yoshida, N. Yamauchi, N. Ueda, T. Sone and S. Tanaka, Surf. Coat. Tech., Vol. 200 (2005) p.506.

Google Scholar

[20] Zhao Cheng, C. X. Li, H. Dong and T. Bell, Surf. Coat. Tech., Vol. 191 (2005) p.195.

Google Scholar

[21] Y. Sun, Transactions of Materials and Heat Treatment, Vol. 25(5) (2004) p.307.

Google Scholar

[22] Y. Sun, Mater Sci. Eng. A, Vol. A402 (2005) p.124.

Google Scholar

[23] Y. Sun, Mater Let. Vol. 59 (2005) p.3410.

Google Scholar