Fe86.5Zr7B3Cu3.5 Nanocrystalline Ribbon Prepared by Melt – Spinning Technique without Annealing

Abstract:

Article Preview

Fe86.5Zr7B3Cu3.5 nanocrystalline ribbon can be directly fabricated by melt – spinning technique with an appropriate quenching speed without annealing processes. The average grain size of α-Fe for Fe86.5Zr7B3Cu3.5 as quenched ribbon prepared with a quenched speed V=40 m/s is about 10-13 nm estimated from X-ray diffraction and TEM observation. For Fe86.5Zr7B3Cu3.5 nanocrystalline as quenched ribbon (V=40m/s), the saturation magnetic induction Bs is 1.47 T, permeability μe at 1 kHz is 25600 and saturation magnetostriction λs is -2×10-6. The magnetoimpedance value Z/Z0 of the Fe86.5Zr7B3Cu3.5 nanocrystalline as quenched ribbon reaches –38.32 % under H=7162 A/m. Our present results reveal a novel route to fabricate the nanocrystaline ribbons with excellent soft magnetic properties and giant magnetoimpedance.

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Edited by:

Chunli BAI, Sishen XIE, Xing ZHU

Pages:

1257-1260

DOI:

10.4028/www.scientific.net/SSP.121-123.1257

Citation:

J. F. Hu et al., "Fe86.5Zr7B3Cu3.5 Nanocrystalline Ribbon Prepared by Melt – Spinning Technique without Annealing", Solid State Phenomena, Vols. 121-123, pp. 1257-1260, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.