Interface Dynamics of Melt Instabilities on Semiconductor Surface

Article Preview

Abstract:

At uniform excitation of semiconductors by laser radiation with pre-threshold power, locally melted regions are formed on irradiated surfaces. This is induced by thermo diffusive instability of a distribution of uniformly generated electron-hole plasma. The shapes of locally melted regions give rise to a great variety of interesting surface patterns. A mathematical model of the surface dynamics, when the instability of the melt front arises along a chosen wave vector, is proposed. The results of computer simulation of interface dynamics of solitary melted region are compared with experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 129)

Pages:

137-143

Citation:

Online since:

November 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Poate, J.W. Mayer: Laser annealing of semiconductors (Acad. Press, NY, 1982).

Google Scholar

[2] A.M. Prokhorov, A. Yu. Bonchik, S.G. Kiyak, A.A. Manenkov, G.N. Mikhailova, A.V. Pokhmurskaja, A.S. Seferov, I. Ursu, V. Craciun, I.N. Mihailescu: Appl. Surf. Sci. Vol. 43 (1989), p.340.

DOI: 10.1016/0169-4332(89)90236-5

Google Scholar

[3] A. Pokhmurska, O. Bonchik, S. Kiyak, G. Savitski, A. Gloskovski: Appl. Surf. Sci. Vol. 712 (2000), p.154.

Google Scholar

[4] A. Yu. Bonchik, B.J. Datsko, V.I. Demchuk, S.G. Kiyak, I.P. Palyvoda, A.F. Shnyr: Semiconductor Physics, Quantum electronics & Optoelectronics Vol. 3, N 3 (2000) p.311.

Google Scholar

[5] S. Kiyak, A. Bonchik, V. Gafijchuk, A. Yuzhanin, I. Tysliuk, A. Pokhmurskaja: Izvestia AN USSR, Vol. 52 (11) (1988) p.2276.

Google Scholar

[6] V. Gafiychuk, A. Shnyr, B. Datsko: Interface dynamics equations: their properties and computer simulation (information on http: /www. xxx. lanl. gov/nlin. AO/0011021, 2000).

Google Scholar

[7] V.V. Gafiychuk, I.A. Lubashevskii: Zh. Khim. Phys. (USSR) Vol. 7, N 9 (1988) p.852 (in Russian).

Google Scholar

[8] V.V. Gafiychuk, I.A. Lubashevskii: Math. Math. Phys. (USSR) Vol. 29, N 9 (1989) p.1331.

Google Scholar

[9] V.V. Gafiychuk, I.A. Lubashevskii, V.V. Osipov: Dynamics of surface structures in systems with a free boundary (Naukova Dumka, Kiev, 1990).

Google Scholar

[10] V.V. Gafiychuk, I.A. Lubashevskii: Nonlinear theory and modeling of free boundary problems arising in distributed media (VNTL Publishers).

Google Scholar