Growth of PLZT Thick Films by Polymer Modified Sol-Gel Processing for Optical Shutting

Article Preview

Abstract:

PLZT9/65/35 thick films were prepared from the solution containing PVP360 (polyvinylpyrrolidone, with average molecular weight of 360000). With the solutions, the critical thickness of a single PLZT layer could increase to ~624nm compared with 77nm-thick films prepared without PVP360. Furthermore, by adding 20~35% excess of Pb to the precursor solutions, the nano-porous rosette-like structures and a small amount of pyrochlore remnant, which were found very common in the PVP-modified films, could be eliminated. 35% Pb excess was also found to initiate liquid-phase sintering, leading to dense and crack-free films. The effect of Pb excess on the rosette removal and densification behavior of the films was discussed. Moreover, the optical and electrical properties of the PLZT films with 35% Pb excess were also studied.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 136)

Pages:

67-74

Citation:

Online since:

February 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.T. Cutchen, J. Harris, Applied Optics, Vol. 14(1975), pp.1866-1873.

Google Scholar

[2] Trapani, Giorgio B, US. Patent 4201450. (1980).

Google Scholar

[3] Reininger, Siegfried, Wiesmeier, et al, USPatent 4572619, (1986).

Google Scholar

[4] Bylander; E. Gerald, US. Patent 5654786. (1997).

Google Scholar

[5] G.W. Gobeli, A.N. Mex, US. Patent 5768003. (June, 1998).

Google Scholar

[6] A.A. BerezhnoÏ, A. A. Berezhnaya, Optics and Spectroscopy, Vol. 94. (2003), pp.216-220.

Google Scholar

[7] F.F. Lange, Science, New series, Vol. 273 (1996), pp.903-909.

Google Scholar

[8] H. KOZUKA,S. Takenaka,H. Tokita, T. Hirano,Y. Higashi, T. Hamatani, J. Sol-Gel Sci. Tech. Vol. 26(2003), pp.681-6.

DOI: 10.1023/a:1020773415962

Google Scholar

[9] H. KOZUKA, M. Kajimura, T. Hirano,K. Katayama, J. Sol-Gel Sci. Tech. Vol. 19(2000), p.205209.

Google Scholar

[10] H. Kozuka, S. Takenaka, H. Tokita, M. Okubayashi,J. Europ. Ceram. Soc., Vol. 24(2004), pp.1585-88.

Google Scholar

[11] S. Takenaka, H. Kozuka, Appl. Phys. Lett., Vol. 79(2001), pp.3485-3487.

Google Scholar

[12] T. Atsuki, N. Soyama, G. Sasaki, T. Yonezawa, K. Ogi, K. Sameshima, K. Hoshiba, Y. Nakao, A. Kamisawa, Jpn.J. Appl. Phys. Vol. 33(1994), p.5196.

DOI: 10.1143/jjap.33.5196

Google Scholar

[13] K.S. HWANG, Y.H. YUN, B.A. KANG, Y.H. KIM, J. Mater. Sci., Vol. 37(2002), pp.365-368.

Google Scholar

[14] J. Ricotea, E. Snoeck, R. Coratger, L. Pardo, J. Phys. Chem. Solids, Vol. 59(1998), pp.151-157.

Google Scholar

[15] Y. TKwon, I. -M. Lee, W.I. Lee, C.J. Kim, I.K. Yoo, Materials Research Bulletin, Vol. 34(1999), pp.749-760.

Google Scholar

[16] Z. H. Du, T.S. Zhang, J. Ma, J. Mater. Res., Vol(22)(2007), pp.2195-2203.

Google Scholar

[17] J.S. Lee, C.J. Kim, D.S. Yoon, C.G. Choi, J.M. Kim, K. No, Jpn.J. Appl. Phys., Vol. 33, Part 1(1994), pp.260-265.

Google Scholar

[18] R. Kurchania, S.J. Milne, J. Mater. Sci., Vol. 33(1998), pp.659-667.

Google Scholar

[19] G.J. Derderian, J.D. Barrie, K.A. Aitchison, P.M. Adams, M.L. Mecartney, J. Am. Ceram. Soc., Vol. 77(1994), pp.820-28.

Google Scholar

[20] L. Amarande, C. Miclea, C. Tanasoiu, J. Europ. Ceram. Soc., Vol. 22(2002), pp.1269-1275.

Google Scholar

[21] C.H. Wang, J. Europ. Ceram. Soc. ,Vol. 22(2002), p.2033-(2038).

Google Scholar

[22] L.B. Kong, J. Ma, H. Huang, R.F. Zhang, J. Alloys and compounds, Vol. 345(2002), 238-245.

Google Scholar

[23] K. Tsuzuku, T. Kobayashi, Jpn.J. Appl. Phys., Part1, Vol. 42(2003), p.6027.

Google Scholar