On the Modelling of Diffraction Line Profiles from Nanocrystalline Materials

Article Preview

Abstract:

Recent advances in Line Profile Analysis of powder diffraction patterns must be paralleled by increasing attention to the quality and quantity of experimental data. The analysis of simulated data with different noise levels demonstrates the importance of statistical quality to reveal fine details of interest in the analysis of nanocrystalline materials, like the crystallite shape. It is also shown how synchrotron radiation diffraction can improve data quality with respect to laboratory measurements, both in terms of statistical quality and in terms of accessible information.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 163)

Pages:

19-26

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures, 2nd edn. (John Wiley and Sons, New York, 1974).

Google Scholar

[2] B.E. Warren: X-ray diffraction, 2nd edition (Dover, New York 1990).

Google Scholar

[3] R.L. Snyder, J. Fiala, H.J. Bunge (Editors): Defect and Microstructure Analysis by Diffraction, IUCr series (Oxford University Press Inc., New York, 1999).

Google Scholar

[4] E.J. Mittemeijer and P. Scardi (Editors): Diffraction Analysis of the Microstructure of Materials, Springer Series in Materials Science, Vol. 68 (Springer-Verlag, Berlin, 2004).

DOI: 10.1007/978-3-662-06723-9

Google Scholar

[5] Diffracplus TOPAS v. 4. 2. Bruker AXS Karlsruhe - Germany (2009).

Google Scholar

[6] A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2000).

Google Scholar

[7] J. Rodríguez-Carvajal: Physica B Vol. 192 (1993) p.55.

Google Scholar

[8] P. Scardi and M. Leoni: Acta Cryst. Vol. A58 (2002), p.190.

Google Scholar

[9] P. Scardi: Z. Kristallogr. Vol. 137 (2002), p.420.

Google Scholar

[10] P. Scardi and M. Leoni: Acta Cryst. Vol. A57 (2001), p.604.

Google Scholar

[11] M. Leoni, J. Martinez-Garcia and P. Scardi: J. Appl. Cryst. Vol. 40 (2007), p.719.

Google Scholar

[12] A. J. C. Wilson: X-ray Optics, 2nd ed. (Methuen, London, 1962).

Google Scholar

[13] M. Leoni, T. Confente and P. Scardi: Z. Kristallogr. Suppl. Vol. 23 (2006), p.249.

Google Scholar

[14] L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër and P. Scardi: J. Appl. Cryst. Vol. 32 (1999), p.36.

DOI: 10.1107/s0021889898009856

Google Scholar

[15] P. Scardi and M. Leoni: J. Appl. Cryst. Vol. 39 (2006), p.24.

Google Scholar

[16] M. Leoni and P. Scardi: J. Appl. Cryst. Vol. 37 (2004), p.629.

Google Scholar

[17] N. Armstrong, W. Kalceff, J.P. Cline and J. Bonevich: J. Res. Natl. Inst. Stand. Technol. Vol. 109 (2004), p.155.

DOI: 10.6028/jres.109.012

Google Scholar

[18] D. Dodoo-Arhin, M. D'Incau, M. Leoni, P. Scardi and G. Vettori. (2009). In preparation.

Google Scholar

[19] J. Poortmans and V. Arkhipov: Thin film solar cells: fabrication, characterization and applications (John Wiley and Sons, New York, 2006).

DOI: 10.1002/0470091282

Google Scholar

[20] G. Norsworthy, C.R. Leidholm, A. Halani V.K. Kapur, R. Roe, B. M. Basol and R. Matson: Solar energy materials and solar cells Vol. 60 (2000), p.127.

DOI: 10.1016/s0927-0248(99)00075-6

Google Scholar

[21] M. Wilkens: Phys. Stat. Sol. (a) Vol. 2 (1970), p.359.

Google Scholar