Structural Transitions in a Co2NiGa Ferromagnetic Shape Memory Alloy

Article Preview

Abstract:

The development of ferromagnetic shape memory for practical applications needs to overpass brittleness issues, in addition to the control of the magnetoelastic domains. The Co-Ni-Ga system can provide adequate structural particularities to increase the ductility. This paper reports on structural observations of the martensitic transformation in a Co2NiGa alloy, in the as-cast and in plastically deformed state. Characterization has been performed before and after the heat treatment, using in-situ X-ray diffraction, optical and electron microscopy, as well as DSC measurements performed on heating and cooling of the samples. The observations show a β + γ two-phase structure that can be further influenced by quenching. The structural contribution on the deformation capacity of the alloys is analyzed, based on the changes in the pattern of transformation. Severe plastic deformation by cold rolling leads to the disappearance of the thermoelastic phase transformation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

202-207

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Wuttig, L. Liu, K. Tsuchiya, R. D. James: J. Appl. Phys. 87, 4707 (2000).

Google Scholar

[2] K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handly, V.V. Kokorin, Appl. Phys. Lett. 69 (1996) (1966).

Google Scholar

[3] R. D. James and M. Wuttig, Phil. Mag. A. 77, 1273 (1998).

Google Scholar

[4] . T. Kakeshita, T. Takeuchi, T. M. Tsujiguchi, T. Saburi, R. Oshima, and S. Muto, Appl. Phys. Lett. 77, 1502 (2000).

DOI: 10.1063/1.1290694

Google Scholar

[5] K. Oikawa, T. Ota, T. Ohmori, Y. Yanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, K. Ishida, Appl. Phys. Lett. 81 (2002) 5201.

DOI: 10.1063/1.1532105

Google Scholar

[6] K. Oikawa, T. Ota, Y. Tanaka, T. Omori, R. Kainuma, K. Ishida, Trans. Mater. Res. Soc. Jpn. 28 (2003) 263.

Google Scholar

[7] M. Wuttig, J. Li, C. Craciunescu, Scripta Mater. 44 (2001) 2393.

Google Scholar

[8] K. Oikawa, L. Wulff, T. Lijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida, Appl. Phys. Lett. 79 (2001) 3290.

DOI: 10.1063/1.1418259

Google Scholar

[9] K. Oikawa, L. Wulff, T. Lijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida, Appl. Phys. Lett. 79 (2001) 3290.

DOI: 10.1063/1.1418259

Google Scholar

[10] J. Liu, H. Xie, Y. Huo, H. Zheng, Jianguo Li Journal of Alloys and Compounds Volume 420, Issues 1-2, 31 (2006)145-157.

Google Scholar

[11] J. Liu, M. Xia, Y. Huang, H. Zheng, J. Li, Journal of Alloys and Compounds 417 (2006) 96–99.

Google Scholar

[12] V.G. Pushin, V.V. Stolyarov, R.Z. Valiev, T.C. Lowe, Y.T. Zhu: Mat. Sci. Eng. A, 410-411 (2005) 386-389.

Google Scholar

[13] F. M. Braz Fernandes, K. K. Mahesh, R. J. C. Silva, C. Gurau, G. Gurau: Phisica Status Solidi 7 (2010) pp.1348-1350.

DOI: 10.1002/pssc.200983371

Google Scholar

[14] I. Yu Khemelevskaya et al. – Proc. Second Int. Conf. on Nanomaterials by Severe Plastic Deformation, 2002, Vienna, Austria.

Google Scholar

[15] R. Valiev: Nat Mater, 3 (2004) 511 – 516.

Google Scholar

[16] A.V. Kulkarni – in Burhanettin ed., Severe Plastic Deformation, 2006 Nova Science Publishers.

Google Scholar