Interfacial Properties and Critical Avalanche Exponents of Shape Memory Alloys and Related Materials

Article Preview

Abstract:

Interfaces in martensites and ferroelastic crystals show internal structures which are not simply the interpolation of the two adjacent domains. These structures can influence solitary front propagation as observed for large depinning forces. They also contribute to local pinning of walls when the applied forces are close to the depinning threshold. Under these conditions, walls propagate in jerks and avalanches. Typical depinning is observed for very small forces in single ferroelastic needle domain. It is shown that jerks occur in elastically driven system both for planar walls (D=2) and for needle tips (which represents a line in the three dimensional crystal, D=1). The experimental power law exponents are ~ -2 for the energy exponent for collective avalanches, -1.3 for the elastic response function and -1.8 for an advancing needle domain in LaAlO3.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

3-12

Citation:

Online since:

June 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Van Humbeeck: J. Alloys Com. Vol. 355 (2003), p.58

Google Scholar

[2] D. Z. Liu and D. Dunne, Scr. Mater. Vol. 48 (2003), p.1611

Google Scholar

[3] Y. N. Wang, X. H. Chen, and H. M. Shen, Proceedings of the 9th intern. Conference on internal friction and ultrasonic attenuation in solids, (1990), p.305

Google Scholar

[4] Z. L. Song, J. S. Zhu, Y. S. Qian, et.al. Solid State Commun. Vol. 118 (2001), p.257

Google Scholar

[5] E.K.H. Salje, H. Zhang,A. Planes, et al. J.Phys. : Condensed Matter Vol. 20 (2008) art. 275216

Google Scholar

[6] H. Zhang, E.K.H. Salje, D. Schryvers, et al. J.Phys. : Condensed Matter Vol. 20 (2008), art. 055220

Google Scholar

[7] E.K.H. Salje, H. Zhang, D. Schryvers, et al. Appl. Phys. Lett. Vol.90 (2007), art. 221903

Google Scholar

[8] J.C. Lashley JC, S.M. Shapiro SM, . B.L. Winn, et al. Phys. Rev. Lett. Vol. 101 (2008), art. 135703

Google Scholar

[9] J. X. Zhang, Acta Mater. Vol. 47 (1999), p.2125

Google Scholar

[10] R. J. Harrison, S. A. T. Redfern, and E. K. H. Salje, Phys. Rev. B Vol.69 (2004) art. 144101; R. J. Harrison, S. A. T. Redfern, A. Buckley, et al. J. Appl. Phys. Vol. 95 (2004), p.1706

Google Scholar

[11] W.Schranz, P. Sondergeld ,A.V. Kityk, et al., Phys. Rev. B Vol. 80 (2009), art. 094110; E.K.H. Salje, H.L. Zhang HL, J. Phys.: Condensed Matter Vol 21 (2009), art. 035901; E.K.H. Salje, M. Zhang, H.L. Zhang HL, J. Phys.: Condensed Matter Vol.21 (2009), art. 335402.

DOI: 10.1088/0953-8984/21/33/335402

Google Scholar

[12] A.V. Kityk, W. Schranz, P. Sondergeld, et al. Phys. Rev. B Vol. 61 (2000) p.946

Google Scholar

[13] S.A. Hayward, F.D. Morrison S.A.T. Redfern, et al., Phys. Rev. B Vol. 72(2005), art. 054110; R.J. Harrison, S.A.T. Redfern, E.K.H. Salje, Phys. Rev. B Vol. 69 (2004), art. 144101

Google Scholar

[14] A. Aird, E.K.H. Salje, J. Phys.: Condensed Matter Vol. 10 (1998), p. L377 ; A. Aird, E.K.H. Salje, European Physical Journal B Vol. 15 (2000), p.205

DOI: 10.1088/0953-8984/10/22/003

Google Scholar

[15] L. Goncalves-Ferreira, S.A.T. Redfern, E. Artacho, et al., Phys. Rev. Letters Vol. 101 (2008), art. 097602

Google Scholar

[16] Y. Kim, M.Alexe, E.K.H. Salje, Appl. Phys. Letters Vol. 96 (2010), art. 032904; C. Franck, G. Ravichandran, K. Bhattacharya, Appl. Phys. Letters Vol. 88 (2006), art. 102907; Y. Xiao, V.B. Shenoy, K. Bhattacharya, Phys. Rrev. Letters Vol. 95 (2005), art. 247603

Google Scholar

[17] E.K.H. Salje, Chemphyschem Vol. 11 (2010), p.940

Google Scholar

[18] E.K.H. Salje, Physics reports – review section of Physics Letters Vol 215 (1992) p.49; D. Speer, E. Salje, Phys. Chem. Minerals Vol. 13 (1986), p.17; E.K.H. Salje, A.Ridgwell, B. Guttler et al., J. Phys.: Condensed Matter Vol. 4 (1992), p.571

DOI: 10.1088/0953-8984/4/2/025

Google Scholar

[19] A.G. Beattie, J. Appl. Phys. Vol. 40 (1969), p.4818

Google Scholar

[20] E.K.H. Salje, H. Zhang, H. Idrissi, et al. Phys. Rev. B Vol. 80 (2009), art. 134114

Google Scholar

[21] H. Zhang , E.K.H. Salje, D. Schryvers, et al. J. Phys. : Condensed Matter Vol. 20 (2008), art. 055220, E.K.H. Salje, H. Zhang, D. Schryvers, et al. Appl. Phys. Letters Vol.90 (2007), art. 221903

DOI: 10.1088/0953-8984/20/5/055220

Google Scholar

[22] E. Vives, J. Ortin, L. Manosa, et al. Phys. Rev. Letters Vol. 72 (1994), p.1694

Google Scholar

[23] E. Bonnot, E. Vives, L. Mañosa, et al. Phys. Rev. B Vol. 78 (2008), art. 094104

Google Scholar

[24] M.C. Kuntz, J.P. Sethna, Phys. Rev. B Vol. 62 (2000), art. 11699; J.S. Urbacj, R.C. Madinson, J.T. Markert, Phys. Rev. Letters Vol. 75 (1995), p.276; T. Nattermann, S. Stepanow, L.H. Tang et al., J. Phys. II France Vol. 2 (1992), p.1483; A. Rosso, P. Le Doussal, K.J. Wiese, Phys. Rev. B Vol. 80 (2009) art. 144204.

Google Scholar

[25] M.C. Gallardo, J. Manchado, F.J. Romero et al., Phys. Rev. B Vol. 81 (2010), art.174102

Google Scholar

[26] E.K.H. Salje, L.Koppensteiner, M. Reinecker, et al., Appl. Phys. Letters Vol. 95 (2009), art. 231908; similarly low exponents have been measured also in Fe-Ni-Co allys by J.S. Urbach R.C. Madison, J.T. Markert, Physical Review Letters Vol. 75 (1995), art. 00319007

Google Scholar

[27] J.P. Sethna, K.A. Dahmen, C.R. Myers, Nature Vol. 410 (2001), p.242 ; J.S. Urbach, R.C. Madison, J.T. Markert, Phys. Rev. Letters Vol. 75 (1995) , art. 0031-9007; M. Kurtz, J.P. Sethna, Phys. Rev. B Vol. 62 (2000), p.11699; A. Rosso, P. Le Doussal, K.J. Wiese, Phys. Rev. B Vol. 80 (2009), art. 144204

DOI: 10.1103/physrevlett.75.4528

Google Scholar

[28] L. Proville, J. Stat. Phys. Vol. 137 (2009), p.717

Google Scholar

[29] H.J. Jensen, J. Phys. A: Math. Gen. Vol. 28 (1995), p.1861

Google Scholar

[30] E.K.H. Salje , Y. Ishibashi, J. Phys.: Condensed Matter Vol. 8 (1996), p.8477

Google Scholar

[31] M. Daraktchiev, E.K.H. Salje, W.T. Lee, et al., Phys. Rev. B Vol.75 (2007) art. 134102

Google Scholar

[32] E.K.H. Salje, A. Buckley, G. Van Tendeloo, et al., American Mineralogist Vol 83 (1998), p.811; N.A. Pertsev, J. Novak, E.K.H. Salje, Philosoph. Mag. A – Phys. Condensed Matter, Defects and Mechanical Properties Vol.80 (2000), p.2201

Google Scholar

[33] U. Bismayer, J. Hensler, E. Salje, et al., Phase Transitions Vol. 48 (1994), p.149

Google Scholar

[34] J. Hensler, H. Baysen, U. Bismayer, et al., Z. Kristallographie Vol. 206 (1993), p.213

Google Scholar

[35] M. Calleja, M.T. Dove, E.K.H. Salje, J. Phys.: Condensed Matter Vol.15 (2003), p.2301

Google Scholar

[36] L. Goncalves-Ferreira, S.A.T. Redfern, E. Artacho, et al., Phys. Rev.B Vol.81 (2010), art. 024109

Google Scholar

[37] D. Shilo, G. Ravichandran, K. Bhattacharya, Nature Materials Vol.3 (2004), p.453

Google Scholar

[38] W.T. Lee, E.K.H. Salje, U. Bismayer U, Phys. Rev.B Vol.72 (2005), art. 104116; W.T. Lee, E.K.H. Salje, L. Goncalves-Ferreira, et al., Phys. Rev.B Vol. 73 (2006), art. 214110

Google Scholar

[39] B. Houchmandzadeh, J. Lajzerowicz, E. Salje, J. Phys.: Condensed Matter Vol.3 (1991), p.5163 ; E.K.H. Salje, H. Zhang, Phase Transitions Vol. 82 (2009), p.452

DOI: 10.1088/0953-8984/3/27/009

Google Scholar