Precipitation in a near Beta Titanium Alloy on Ageing: Influence of Heating Rate and Chemical Composition of the Beta-Metastable Phase

Abstract:

Article Preview

In the present study we focus on the precipitation processes during heating and ageing of β-metastable phase in the near β Ti-5553 alloy. Transformation processes have been studied using continuous high energy X-Ray Diffraction (XRD) and electrical resistivity for two different states of the β-metastable phase. Microstructures have been observed by electron microscopy. Different transformation sequences are highlighted depending on both heating rate and chemical composition of the β-metastable phase. At low temperatures and low heating rates, the hexagonal ωiso phase is first formed as generally mentioned in the literature. Increasing the temperature, XRD evidences the formation of an orthorhombic phase (α’’), which evolves toward the hexagonal pseudo compact α phase. For higher heating rates or for richer composition in β-stabilizing elements of the β-metastable phase, ω phase may not form and α’’ forms directly and again transforms into α phase. A direct transformation from β-metastable to a phase is observed for the highest heating rate. The formation of the metastable ωiso and α’’ phases clearly influences the final morphology of α.

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson

Pages:

760-765

DOI:

10.4028/www.scientific.net/SSP.172-174.760

Citation:

A. Settefrati et al., "Precipitation in a near Beta Titanium Alloy on Ageing: Influence of Heating Rate and Chemical Composition of the Beta-Metastable Phase", Solid State Phenomena, Vols. 172-174, pp. 760-765, 2011

Online since:

June 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.