Non-Isothermal Austenite Grain Growth Kinetics in the HAZ of a Microalloyed X-80 Linepipe Steel

Article Preview

Abstract:

Non-isothermal austenite grain growth kinetics under the influence of several combinations of Nb, Ti and Mo containing complex precipitates has been studied in a microalloyed linepipe steel. The goal of these studies is the development of a grain growth model to predict the austenite grain size in the weld heat affected zone (HAZ). A detailed electron microscopic investigations of the as-received steel proved the presence of Ti-rich, Nb-rich and Mo-rich precipitates. Inter and intragranular precipitates of ~5-150 nm have been observed. The steel has been subjected to austenitizing heat treatments to selected peak temperatures of 950, 1150 and 1350°C at various heating rates of 10, 100 and 1000°C/s. Thermal cycles have been found to have a strong effect on the final austenite grain size. The increase in heating rate from 100 to 1000°C/s has a negligible difference in the austenite grain size irrespective of the austenitizing temperature. However, the increase in grain size has been noticed at 10°C/s heating rate for all the austenitizing temperatures. The austenite grain growth kinetics have been explained taking into account the austenite growth in the presence of precipitates.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

809-814

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Moon, C. Lee, S. Uhm and J. Lee: Acta Mater. Vol. 54 (4) (2006), p.1053.

Google Scholar

[2] PA Manohar, M. Ferry, and T. Chandra: ISIJ int. Vol. 38(9) (1998), p.913.

Google Scholar

[3] T. Gladman.: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pages 298–309, (1966).

Google Scholar

[4] T. Gladman and FB Pickering: Iron Steel Inst. J. (1967) 205, (1967).

Google Scholar

[5] M. Hillert: Acta Metall. Vol 36 (12) (1988), p.3177–3181.

Google Scholar

[6] A. Yoshie, M. Fujioka, Y. Watanabe, K. Nishioka, and H. Morikawa: ISIJ Int. Vol. 32(3) (1992), p.395.

Google Scholar

[7] Y. Saito and C. Shiga: ISIJ Int. Vol. 32(3) (1992), p.414.

Google Scholar

[8] T. Senuma, M. Suehiro, and H. Yada: ISIJ Int. Vol. 32(3) (1992) p.423.

Google Scholar

[9] A.K. Giumelli, M. Militzer and E.B. Hawbolt: ISIJ Int. Vol. 39(3) (1999) p.271.

Google Scholar

[10] S. Jiao, J. Penning, F. Leysen, Y. Houbaert and E. Aernoudt: ISIJ Int. Vol. 40(10) (2000), p.1035.

DOI: 10.2355/isijinternational.40.1035

Google Scholar

[11] S. Mishra and T. DebRoy: Mater. Sci. Technol., Vol. 22 (3) (2006) p.253.

Google Scholar

[12] M. A. Grossmann: Trans. ASM, Vol. 22 (1934), p.861.

Google Scholar

[13] H. Tobian and R. L. Kenyon: Trans. ASM Vol. 25 (1937), p.133.

Google Scholar

[14] T. G. Digges: Trans ASM Vol. 29 (1941), p.285.

Google Scholar

[15] M. Militzer, E.B. Hawbolt, T. Ray Meadowcroft, and A. Giumelli: Metall. and Mater. Trans. A Vol. 27 (11) (1996) p.3399.

DOI: 10.1007/bf02595433

Google Scholar

[16] A. Rossi, A. Mascanzoni, G. Grispoldi, and F. De Meo: Fundamentals of Microalloying Forging Steels, p.351. TMS-AIME, Warrendale, PA, (1987).

Google Scholar

[17] H. Tamehoro and H. Nakasugi: Trans. ISIJ, Vol. 25(4) (1985), p.311.

Google Scholar

[18] A. Danon, C. Servant, A. Alamo, and J. C. Brachet: Mater. Sci. Eng. A, Vol. 348(1-2) (2003) p.122.

Google Scholar

[19] S.S. Sahay, C.P. Malhotra, and A.M. Kolkhede: Acta Mater., Vol. 51(2) (2003), p.339.

Google Scholar

[20] M.J. Leap and E.L. Brown: Mater. Sci. Technol., Vol. 18(9) (2002), p.945.

Google Scholar

[21] M. Toloui and M. Militzer: Int. J. Mater. Res. Vol 4 (2010), p.542.

Google Scholar

[22] C. Zener: J. App. Phys. Vol. 20 (1949), p.950.

Google Scholar

[23] K.J. Irvine, F.B. Pickering, and T. Gladman: J. Iron Steel Inst. Vol. 205 (1967), p.161.

Google Scholar

[24] R. Coladas, J. Masounave, G. Guerin and J. P. Bailon: Met. Sci., Nov (1977), p.509.

Google Scholar

[25] I. J. Cuddy and J. C. Raley, Metall. Trans. A Vol 14 (1983), p. (1989).

Google Scholar

[26] F. Penalba, C. Garcia de Andres, M. Carsi and F. Zapirain: J. Mater. Sci. Vol. 31 (1996) p.3847.

Google Scholar

[27] C. Garcia de Andres, C. Capdevila, F. G. Caballero and D. San Martin: J. Mater. Sci. Vol. 36 (2001) p.565.

Google Scholar

[28] Information on www. thermocalc. com.

Google Scholar