Microstructure and Properties of the Sintered Diamond Reinforced by Diamond-MWCNTs Composite Fibers

Article Preview

Abstract:

A new type of sintered diamond reinforced by diamond-MWCNTs composite fibers which were randomly orientated and even distributed in the diamond matrix was synthesized by using 3(wt)% mullti-walled carbon nanotubes(MWCNTs) as starting additive under high pressure of 5.8GPa at temperature of 1500°C for 1 min. A special polycrystalline diamond structure of direct bonding of both diamond to diamond and diamond to diamond-MWCNTs composite fiber was observed. The testing results show that it possesses not only high hardness (49-52GPa) and Young’s modulus (878GPa) but also high bending strength (1320~1540GPa) and fracture toughness (9.0~9.2MPa•M1/2) as it was theoretically predicted. The high performances of the composite were contributed to the fiber strengthening effect and the special structure which can offer more extensive diamond to diamond bonding.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 175)

Pages:

1-7

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Katzman and W.F. Libb: Science Vol. 172 (1971), pp.1132-1133.

Google Scholar

[2] M. Akaishi, H. Kanda, Y. Sato, N. Setaka, T. Ohsawa, O. Fukunaga, J. Mater: Sci. Vol. 17 (1982), pp.193-198.

DOI: 10.1007/bf00809051

Google Scholar

[3] H. Itoh, S. Tajima, M. Tamaki, S. Naka: J. Mater. Sci. Vol. 23(1988), pp.2872-2881.

Google Scholar

[4] Y. H. Wang, M.Z. Wang, B. Y. Li: Acta Materiae Compositae Sinica Vol. 11(2)(1994), pp.57-61.

Google Scholar

[5] Y. Li, G. T. Zhou: Diamond and Abrasive Engineering Vol. 33(3)(1996), pp.8-10.

Google Scholar

[6] H. Pastor: Refractory and Hard Metals Vol. 6(1987), pp.196-209.

Google Scholar

[7] H. Pastor: Refractory and Hard Metals Vol. 3(1988), pp.21-28.

Google Scholar

[8] S.J. Li, L.W. Wang, S.Z. Tang: Chinese Journal of High Pressure Physics (3)(1992), pp.192-197.

Google Scholar

[9] M.V. Sneddon, D.R. Hall: J. of Petroleum Tech. Vol. 12(1998), pp.1593-1601.

Google Scholar

[10] B.I. Yakobson, R.E. Smalley: Am. Sci. Vol. 85(1997), p.324.

Google Scholar

[11] W. Wong, P.E. Sheehan, C.M. Lieber: Science Vol. 277(1997), pp. (1971).

Google Scholar

[12] M. Monthioux and J. G. Lavin: Carbon Vol. 32(1994), p.335.

Google Scholar

[13] Y.Q. Zhu, T. Sekine, J. Kobayashi, J. Kobayashi, E. Takazawa, M. Terrones, H. Terrones: Chem. Phys. Lett. 287(1998), pp.689-693.

DOI: 10.1016/s0009-2614(98)00226-7

Google Scholar

[14] L.C. Chen, L.J. Wang, D.S. Tang, S.S. Xie, C.Q. Jing: Chinese Journal of High Pressure Physics Vol. 15(1)(2001), pp.1-3.

Google Scholar

[15] B. Wei, J. Zhang, J. Liang and D. Wu: Carbon Vol. 36(7-8)(1998), pp.997-1001.

Google Scholar

[16] R.A. Skeland: The Science and Engineering of Materials, 3rd edn. PWS publishing, Boston (1994).

Google Scholar

[17] S.B. Sinnot, O.A. Shenderova, C.T. White and D.W. Brenner: Carbon Vol. 36 (1998), pp.1-9.

Google Scholar

[18] F.M. Deng, G. Guo, Q.W. Chen, W.Z. Li: Characterization of Diamond–CNTs Composite Fiber Synthesized under High Pressure and High Temperature, (Submitted).

Google Scholar

[19] H.T. Hall: National Bureau of Standards (USA) Special Publication Vol. 326 (1971), p.313.

Google Scholar

[20] D.C. Roberts: Ind. Dia. Rev. Vol. 39 (1979), pp.237-241.

Google Scholar

[21] B.F. Becher, C.H. Hsueh, P. Angelini, et al.: J. Amer. Sci. Lett. Vol. 13(1994), p.1104.

Google Scholar

[22] F.M. Deng, Q.W. Chen, P. Y. Huang: Mining and Metallurgical Engineering Vol. 17(2) (1997), pp.64-67.

Google Scholar