Phase Transition, Birefringence and Orientational Order Parameter Studies in Four Members of Benzylidene Aniline Liquid Crystals

Article Preview

Abstract:

The nature of the phase transitions across isotropic–nematic (IN) and nematic–smectic-A (N-SmA) are carried out using density measurements in N-(p-n-ethoxy benzylidene)-p-n-pentyl aniline, 2O.5, N-(p-n-methoxy benzylidene)-p-n-pentyloxy aniline, 1O.O5, N-(p-n-ethyl benzylidene)-p-n-dodecyl aniline, 2.12 and N-(p-n-butyl benzylidene)-p-n-dodecyl aniline, 4.12. The compounds exhibit IN, IN, IN and INSmA phase sequences respectively with varying thermal ranges suitable for the study of birefringence. The birefringence studies are carried out using Newton’s rings and wedge techniques which provide δn = (ne - no) (the birefringence) ne, and no respectively. The orientational order parameter, S is evaluated (i) directly from δn and Δn (the birefringence in perfect order), independent of the local field that the nematic molecule experiences and (ii) from molecular polarizabilities estimated from ne, no and density values assuming isotropic as well as anisotropic field that the nematic molecule experiences. The estimated order parameter from the different techniques is compared with one another and with the literature data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 181-182)

Pages:

115-119

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. G. K. M. Pisipati: Z. Naturforsch. Vol. 58a (2003), p.661.

Google Scholar

[2] N. Ajeetha and V. G. K. M. Pisipati: Z. Natureforsch Vol. 60a (2005), p.207.

Google Scholar

[3] P. Pardhasaradhi, C. S. V. S. Murthy, J. Lalitha Kumari, P.V. Datta Prasad and V. G. K. M. Pisipati: Mol. Cryst. Liq. Cryst. Vol. 511 (2009), p.121.

Google Scholar

[4] P. Keller and B. Scheurle: Angew. Chem. Int. Ed. Eng. Vol. 8 (1969), p.884.

Google Scholar

[5] N. Ajeetha, M. Ramakrishna Nanchara Rao, P. V. Datta Prasad and V. G. K. M . Pisipati: Z. Naturforsch: Vol. 60a (2005), p.749.

Google Scholar

[6] P. V. Datta Prasad and V. G. K. M. Pisipati: Mol. Cryst. Liq. Cryst. Vol. 511( 2009), p.102.

Google Scholar

[7] I. Haller, H. A. Huggins, H. R. Lilienthal and T.R. McGuire: J. Phys. Chem. Vol. 77 (1973), p.950.

Google Scholar

[8] B. J. Zywucki and W. Kuczynski: IEEE Transactions. Vol. 8 (2001), p.512.

Google Scholar

[9] W. Kuczynski, B. Zywucki and J. Malecki: Mol. Cryst. Liq. Cryst. Vol. 381(2002), p.1.

Google Scholar

[10] V. G. K. M. Pisipati, N. V. S. Rao, P. V. Datta Prasad and P. R. Alapati: ZNatureforsch Vol. 40a (1985), p.472.

Google Scholar

[11] Ch Srinivasu, V. G. K. M. Pispati, C. R. Prabhu, P. N. Murty and S. Lakshiminarayana: Z. Naturforsch Vol. 62a (2007), p.75.

Google Scholar

[12] N. V. S Rao, P. V. Datta Prasad and V. G. K. M. Pisipati: Mol. Crtst. Liq. Cryst. Vol. 1 26(1985), p.175.

Google Scholar

[13] N. Ajeetha, and V. G. K. M. Pisipati: Z Naturforsch Vol. 58a (2003), p.735.

Google Scholar

[14] W. L. Mc Millan,: Phy. Rev. A. Vol. 4 (1971), p.1238 ; Phy. Rev. A. Vol. 6 (1972), p.936; Phy. Rev. A. Vol. 8 (1973), p.328; Phy. Rev. A, Vol. 8 (1973), p.921.

Google Scholar

[15] J. A. Smith, R. A. DiStasio, N. A. Hannah, R. W. Winter, T. J. R. Weakley, G. L. Gard and S. B. Rananavare: J. Chem. Phys. B, Vol. 108 (2004), p.19940.

DOI: 10.1021/jp047732o

Google Scholar

[16] S. Chandrasekhar and N. V. Madhusudhana: J. Phys. (Paris) Colloq. C-4, Supp. Vol. 11(1969), p. C4 24.

Google Scholar

[17] H. S. Subrahmanyam, D. K. Murthi: Mol. Cryst. Liq. Cryst. Vol. 22 (1973) p.239.

Google Scholar

[18] E. R. Lippincott and M.O. Dayhoff: Spectrachim. Acta. Vol. 16 (1960), p.807.

Google Scholar

[19] E. R. Lippincott, G. Nagarajan and J.M. Stutman: J. Phys. Chem. Vol. 70 (1966), p.78.

Google Scholar

[20] Y. N. Murthy and V. R. Murthy: Cryst. Res. Technol. (1997), 32, 999 and the references therein.

Google Scholar