Effects of Laser Remelting at Cryogenic Conditions on Microstructure and Wear Resistance of the Ti6Al4V Alloy Applied in Medicine

Article Preview

Abstract:

The titanium and its alloys can be subjected to surface treatment, including laser treatment. In this work a new laser treatment at cryogenic conditions of Ti6Al4V alloy has been described. The work has been aimed at establishing whether such surface treatment could be suitable for implants working under wear in biological corrosive environment. The remelting has been made with the use of CO2 continuous work laser at laser power between 3 and 6 kW, at scan rate 0.5 and 1 m/s. The microstructure, surface topography, hardness, microhardness and wear linear rate and mass loss under tribological tests made in Ringer`s solution have been made. The results have shown that despite the surface cracking the tribological properties in simulated body fluid have been substantially improved.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 183)

Pages:

215-224

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Zieliński, S. Sobieszczyk, T. Seramak et al.: Biocompatibility and bioactivity of load-bearing metallic implants, Adv. Mater. Sci. 10, No. 4 (2010) 21-31.

DOI: 10.2478/v10077-010-0013-1

Google Scholar

[2] S. Mridha, T.N. Baker: Metal matrix composite layer formation with 3 μm SiCp powder on IMI318 titanium alloy surfaces through laser treatment, J. Mater. Process. Technol. 63 (1997) 432- 437.

DOI: 10.1016/s0924-0136(96)02660-x

Google Scholar

[3] M. Katto, M. Nakamura, T. Tanaka, T. Nakayama: Hydroxyapatite coatings deposited by laser-assisted laser ablation method, Appl. Surf. Sci. 197–198 (2002) 768-771.

DOI: 10.1016/s0169-4332(02)00411-7

Google Scholar

[4] V. Nelea, C. Ristoscu, C. Chiritescu, et al.: Pulsed laser deposition of hydroxyapatite thin films on Ti-5Al-2. 5Fe substrates with and without buffer layers, Appl. Surf. Sci. 168 (2000) 127-131.

DOI: 10.1016/s0169-4332(00)00616-4

Google Scholar

[5] Y.S. Tian, Q.Y. Zhang, D.Y. Wang, Study on the microstructures and properties of the boride layers laser fabricated on Ti–6Al–4V alloy, J. Mater. Proc. Tech. 209 (2009) 2887-2891.

DOI: 10.1016/j.jmatprotec.2008.06.043

Google Scholar

[6] A. Courant, J.J. Hantzpergue, S. Benayoun: Surface treatment of titanium by laser irradiation to improve resistance to dry-sliding friction, Wear 236 (1999) 39-46.

DOI: 10.1016/s0043-1648(99)00254-9

Google Scholar

[7] S. Mridha, T.N. Baker: Crack-free hard surfaces produced by laser nitriding of commercial purity titanium, Mater. Sci. Eng. A 188 (1994) 229-239.

DOI: 10.1016/0921-5093(94)90376-x

Google Scholar

[8] C. Hu, T.N. Baker: The importance of preheat before laser nitriding a Ti–6Al–4V alloy, Mater. Sci. Eng. A 265 (1999) 268-275.

DOI: 10.1016/s0921-5093(98)01135-6

Google Scholar

[9] N. Ohtsu, K. Kodama. K. Kitagawa. K. Wagatsuma: Comparison of surface films formed on titanium by pulsed Nd: YAG laser irradiation at different powers and wavelengths in nitrogen atmosphere, Appl. Surf. Sci. 256 (2010) 4522-4526.

DOI: 10.1016/j.apsusc.2010.02.040

Google Scholar

[10] N. Ohtsu. M. Yamane. K. Kodama. K. Wagatsuma: Surface hardening of titanium by pulsed Nd: YAG laser irradiation at 1064- and 532-nm wavelengths in nitrogen atmosphere, Appl. Surf. Sci. 257 (2010) 691-695.

DOI: 10.1016/j.apsusc.2010.07.025

Google Scholar

[11] E.C. Santos. M. Morita, M. Shiomi et al.: Laser gas nitriding of pure titanium using CW and pulsed Nd: YAG lasers, Surf. Coat. Techn. 201 (2006) 1635-1642.

DOI: 10.1016/j.surfcoat.2006.02.048

Google Scholar

[12] S. Sathish, M. Geetha, N.D. Pandey et al.: Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys, Mater. Sci. Eng. C 30 (2010) 376-382.

DOI: 10.1016/j.msec.2009.12.004

Google Scholar

[13] M. Gołębiewski, G. Krużel, R. Major et al.: Morphology of titanium nitride produced using glow discharge nitriding, laser remelting and pulsed laser deposition, Mater. Chem. Phys. 81 (2003) 315-318.

DOI: 10.1016/s0254-0584(02)00591-6

Google Scholar

[14] P. Jiang, X.L. He, P. He et al.: Wear resistance of a laser surface alloyed Ti–6Al–4V alloy, Surf. Coat. Techn. 130 (2000) 24-28.

DOI: 10.1016/s0257-8972(00)00680-0

Google Scholar

[15] D.S. Badkar, K.S. Pandey, G. Buvanashekar, Parameter optimization of laser transformation hardening by using Taguchi method and utility concept, Intl. J. Adv. Manufact. Techn. 52 (2011) 1067-1077.

DOI: 10.1007/s00170-010-2787-z

Google Scholar

[16] A. Watanabe, M.M. McBride, P. Newton, K.S. Kurtz: Laser surface treatment to improve mechanical properties of cast titanium, Dental Mater. 25 (2009) 629-633.

DOI: 10.1016/j.dental.2008.11.006

Google Scholar

[17] Robinson J.M., Reed R.C., Van Brussel B.A., De Hosson J.T.M.: X-ray measurement of residual stresses in laser surface melted Ti-6Al-4V alloy, Mater. Sci. Eng. A 208 (1996) 143-151.

DOI: 10.1016/0921-5093(95)10158-6

Google Scholar

[18] M. Trtica, B. Gakovic, D. Batani et al.: Surface modifications of a titanium implant by a picosecond Nd: YAG laser operating at 1064 and 532 nm, Appl. Surf. Sci. 253 (2006) 2552-2556.

DOI: 10.1016/j.apsusc.2006.05.024

Google Scholar

[19] Z. Sun, I. Annergren, D. Pan, T.A. Mai: Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet, Mater. Sci. Eng. A 345 (2003) 293-300.

DOI: 10.1016/s0921-5093(02)00477-x

Google Scholar

[20] M. Bereznai, I. Pelsöczi, Z. Tóth et al.: Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material, Biomaterials 24 (2003) 4197-4203.

DOI: 10.1016/s0142-9612(03)00318-1

Google Scholar

[21] T.M. Yue, T.M. Cheung, H.C. Man: The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank`s solution, J. Mater. Sci. Lett. 19 (2000) 205-208.

Google Scholar

[22] T.M. Yue, J.K. Yu, Z. Mei, H.C. Man: Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement, Mater. Lett. 52 (2002) 206-212.

DOI: 10.1016/s0167-577x(01)00395-0

Google Scholar

[23] F. Guillemot, E. Prima et al.: Ultraviolet laser surface treatment fore biomedical applications of b titanium alloys: morphological and structural characterization, Appl. Phys. A 77 (2003) 899-904.

DOI: 10.1007/s00339-003-2162-0

Google Scholar

[24] C. -Y. Park, S. -G. Kim, M. -D. Kim et al.: Dental implant. Surface properties of endosseous dental implants after NdYAG and CO2 laser treatment at various energies, J. Oral Maxillofac. Surg. 63 (2005) 1522-1527.

DOI: 10.1016/j.joms.2005.06.015

Google Scholar

[25] A.Y. Vorobyev, C. Guo: Femtosecond laser structuring of titanium implants, Appl. Surf. Sci. 253 (2007) 7272-7280.

DOI: 10.1016/j.apsusc.2007.03.006

Google Scholar

[26] Y. Lin, M.C. Gupta, R.E. Taylor et al. : Nanosecond pulsed laser micromachining for experimental fatigue life study of Ti–3Al–2. 5V tubes, Optics Lasers Eng. 47 (2009) 118-122.

DOI: 10.1016/j.optlaseng.2008.07.008

Google Scholar

[27] A. Charles S. Montross, T. Wei, L. Ye et al.: Laser shock processing and its effects on microstructure and properties of metal alloys: a review, Int. J. Fatigue 24 (2002) 1021-1036.

DOI: 10.1016/s0142-1123(02)00022-1

Google Scholar

[28] B. Majkowska, W. Serbiński: Cavitation wearing of the SUPERSTON alloy after laser treatment at cryogenic conditions, Solid State Phenom. 165 (2010) 306-309.

DOI: 10.4028/www.scientific.net/ssp.165.306

Google Scholar

[29] A. Zieliński, W. Serbiński, B. Majkowska, M. Jażdżewska, I. Skalski: Influence of laser remelting at cryogenic conditions on corrosion resistance of non-ferrous alloys, Adv. Mater. Sci. 9, No. 4 (2009) 21-28.

DOI: 10.2478/v10077-009-0018-9

Google Scholar

[30] Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo: Research progress on laser surface modification of titanium alloys, Appl. Surf. Sci. 242 (2005) 177-184.

DOI: 10.1016/j.apsusc.2004.08.011

Google Scholar