Effects of Thermal Losses on the Heating of a Multifunctional LTCC Module for Atomic Clock Packaging

Article Preview

Abstract:

An innovative multifunctional LTCC module has been designed for miniature atomic clock packaging. Efficient packaging and interconnection of the atomic clock packaging is a critical issue and a precise temperature control is required for some components, such as mini-cell and light source. The great advantage of using LTCC technology for this application is that it allows the integration of different functions, such as heaters and PTCs resistors for temperature measurement and control, and optionally other active elements. In this research, a platform for measuring the thermal conductivity of materials has been developed in order to perform precise thermal studies on the packaging. The relationship between achieved temperature and power dissipated for the heating of the LTCC module has been calculated in different experimental configurations, in order to determine the effects of conduction and convection on the heating and estimate the thermal losses that they introduce into the system.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 188)

Pages:

244-249

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.Camparo, The Rubidium atomic clock and basic research, Physics Today 11 (2007) 33-40.

DOI: 10.1063/1.2812121

Google Scholar

[2] R.Lutwak, P.Vlitas, M.Varghese, M.Mescher, M.Serkland, D.K. Peake, The MAC – a miniature atomic clock, in: Proc.Joint IEEE Int. Freq. Contr. Symp. Precise Time Time Interval (PTTI) Syst. Appl. Meeting, Vancouver, Canada 2005, 752-757.

DOI: 10.1109/freq.2005.1574029

Google Scholar

[3] S. Knappe, V. Shah, P. Schwindt, L. Hollberg, J. Kitching, A microfabricated atomic clock, Appl. Phys. Lett. 85 (2004) 1460-1462,.

DOI: 10.1063/1.1787942

Google Scholar

[4] S.Knappe, MEMS atomic clocks, in: Comprehensive Microsystems, Y.Gianchandani, O.Tabata, H.Zappe (ed.), Elsevier (2007) 571-612.

DOI: 10.1016/b978-044452190-3.00048-3

Google Scholar

[5] S. Knappe, P.D.D. Schwindt, V. Shah†, L. Hollberg, and J. Kitching, A chip-scale atomic clock based on 87Rb with improved frequency stability, Opt. Express 13 (2005) 1249–1253,.

DOI: 10.1364/opex.13.001249

Google Scholar

[6] R. Lutwak et al, The chip-scale atomic clock-low-power physics package, Proc. Precision Time and Time Interval (PTTI) Syst. Applic. Mtg, Washington, DC, 2004.

Google Scholar

[7] Y. Imanaka, Multilayered Low-Temperature Co-fired Ceramics (LITCC) technology, first ed., Springer, New York, 2005.

Google Scholar

[8] T. Maeder, Y. Fournier , S. Wiedmer, H. Birol, C. Jacq, P. Ryser , 3D structuration of LTCC / thick-film sensors and fluidic devices, Proc. 3rd International Conference on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT), Denver, USA, 2007:THA13.

DOI: 10.4028/www.scientific.net/kem.336-338.1849

Google Scholar

[9] Y.Fournier, G.Boutinard-Rouelle, N.Craquelin, T.Maeder, P.Ryser, SMD pressure and flow sensor for compressed air in LTCC technology with integrated electronics, Procedia Chem. 2009 1471-1474.

DOI: 10.1016/j.proche.2009.07.367

Google Scholar

[10] J. Zhong, H.H. Bau, Thick film thermistors printed on low temperature co-fired ceramic tapes, Am. Ceram. Soc. Bull. 80 (2001) 39–42.

Google Scholar

[11] M. Miyamoto, J. Sumikawa, T. Akiyoshi, T. Nakamura, Effect of axial heat conduction in a vertical flat plate on free convection heat transfer. Int. J. Heat Transfer Mass Transfer, 22 (1980) 1545–1553.

DOI: 10.1016/0017-9310(80)90158-1

Google Scholar

[12] X.F. Peng, G.P. Peterson, Convective heat transfer and flow friction for water flow in microchannel structures. Int.J. Heat Transfer Mass Transfer, 39 (1996) 2599–2608.

DOI: 10.1016/0017-9310(95)00327-4

Google Scholar

[13] DG Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method, Review of Scientific Instruments, 61 (1990) 802-808,.

DOI: 10.1063/1.1141498

Google Scholar

[14] T. C. Harman, J. H. Cahn, and M. J. Logan, Measurement of Thermal Conductivity by Utilization of the Peltier Effect , J. Appl. Phys. 30 (1959) 1351-1359.

DOI: 10.1063/1.1735334

Google Scholar

[15] Zampino M.A., Kandukuri R., Jones W.K., High Performance Thermal Vias in LTCC Substrates, Proc. Inter Society Conf. on Thermal Phenomena, 2002, 179-185

DOI: 10.1109/itherm.2002.1012455

Google Scholar