Effect of Sintering Parameters on the Stability of Phases of the ZnFe2O4/α-Fe Nanocomposite

Article Preview

Abstract:

The ZnFe2O4/α-Fe nanocomposite powders were obtained by ball milling starting from ZnFe2O4 powder synthesized by classical ceramic method and commercial iron powder. Two way of milling were used for the synthesis of the ZnFe2O4/α-Fe nanocomposite. In both cases after milling process the phases are relatively uniformly distributed in material and zinc ferrite mean crystallite size decreases from micrometric range up to 11 nm for the first milling mode and up 48 nm for second milling mode. The ZnFe2O4/α-Fe nanocomposite powders were compacted by Spark Plasma Sintering method (SPS). During sintering a reaction between nanocomposite phases occurs, thus leading to the formation of ZnO and FeO. The evolution of the powders during milling and stability of the nanocomposite phases was investigated by X-ray diffraction. The powders and compacts morphology and local chemical homogeneity were investigated by scanning electron microscopy (SEM) and respectively by energy dispersive x-ray spectrometry (EDX). The influence of the sintering parameters on the stability of nanocomposites phases is studied.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 188)

Pages:

31-36

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Wang, E. Wang, Effects of milling and crystallization conditions on microstructure of Nd2Fe14B/α-Fe powder, Trans. Nonferrous Met. Soc. China 17 (2007) 138-142.

DOI: 10.1016/s1003-6326(07)60062-4

Google Scholar

[2] M. Ito, K. Majima, T. Umemoto, S. Katsuyama, H. Nagai, Magnetic properties and microstructure of SmCo5/α-Fe nanocomposite magnets prepared by mechanical alloying, J. Alloys Compd. 329 (2001) 272–277.

DOI: 10.1016/s0925-8388(01)01607-3

Google Scholar

[3] V. Pop, O. Isnard, I. Chicinas, D. Givord, Magnetic and structural properties of SmCo5/ α -Fe nanocomposites, J. Magn. Magn. Mater. 310 (2007) 2489–2490.

DOI: 10.1016/j.jmmm.2006.11.090

Google Scholar

[4] S. Guo, W. Liu, H. Meng, X.H. Liu, W.J. Gong, Z. Han, Z.D. Zhang, Exchange bias and its training effect in Ni/NiO nanocomposites, J. Alloys Compd. 497 (2010) 10–13.

DOI: 10.1016/j.jallcom.2010.03.003

Google Scholar

[5] X. H. Liu, W. B. Cui, W. Liu, X. G. Zhao, D. Li, Z. D. Zhang, Exchange bias and phase transformation in α-Fe2O3/Fe3O4 nanocomposites, J. Alloys Compd. 475 (2009) 42–45.

DOI: 10.1016/j.jallcom.2008.07.097

Google Scholar

[6] S.R. Mishra, I. Dubenko, J. Griffis, N. Ali, K. Marasinghe, Exchange bias effect in ball milled Co–Cr2O3 FM–AFM nanocomposites, J. Alloys Compd. 485 (2009) 667–671.

DOI: 10.1016/j.jallcom.2009.06.046

Google Scholar

[7] A. S. Albuquerque, J. D. Ardisson, W. A. A. Macedo, T. S. Plivelic, I. L. Torriani, J. Larrea, E. B. Saitovitch, Structural and magnetic properties of NiFe2O4-SnO2 nanocomposite, J. Magn. Magn. Mater. 272–276 (2004) 2211–2213.

DOI: 10.1016/j.jmmm.2003.12.1270

Google Scholar

[8] G. P. Lopez, S. P. Silvetti, S. E. Urreta, E. D. Cabanillas, Magnetic interactions in high-energy ball-milled NiZnFe2O4/SiO2 composites, Physica B, 398 (2007) 241–244

DOI: 10.1016/j.physb.2007.04.024

Google Scholar

[9] B. V. Neamţu, PhD thesis, Matériaux compacts magnétiques doux obtenus à l'état nanocristallin à partir de poudres d'alliages Ni-Fe-X issues de mécanosynthèse, Technical University of Cluj-Napoca and Université Joseph Fourier, Grenoble, (2010).

Google Scholar

[10] G. K. Williamson and W. H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1 (1953) 22-31

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[11] T. F. Marinca, I. Chicinaş, O. Isnard, V. Pop, Structural and magnetic properties of nanocrystalline ZnFe2O4 powder synthesized by reactive ball milling, Optoelectron. Adv. Mater. Rapid Commun. 5(1) 92011) 39 – 43.

Google Scholar