Research of the Milling Time Influence on Ag-Cu Powder Particles Size Processed by Mechanical Alloying Route

Article Preview

Abstract:

This research focuses on Ag-Cu powder particles processing by mechanical alloying (MA) route. The powder mixture is representative for the eutectic composition, respectively 72%wt. Ag + 28% wt. Cu. The milling process is developed in high energy ball mill Pulverisette 6, using different size for the milling balls, in wet conditions for 80 hours. One of the most important parameter studied in this research is the particle size distribution of the processed powder mixture. Thus, it changes along the milling time, from 10…75 µm at the beginning of MA process up to (60 – 80) nm at 80 h. The milling parameters will be optimized in future research depending on the particle size distribution related with thermophysical and thermodynamic properties focused on electrical and optical properties improvement.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 188)

Pages:

382-387

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Rospide, Electronics market forecast and industry trends 2007-2012, Electronica 2008, Nov.13, (2008)

Google Scholar

[2] H. Ehrenreich, H.R. Philipp, Optical properties of Ag and Cu, Phys. Rev., 128, 4 (1962) 1622-1629

DOI: 10.1103/physrev.128.1622

Google Scholar

[3] G. Henshall, R. Healey, R.S. Pandher, K. Sweatman, K. Howell, R. Coyle, T. Sack, P. Snugovsky, S. Tisdale, F. Hua, G. O'Malley, Addressing opportunities and risks of Pb-free solder alloy alternatives, 2009 European Microelectronics and Packaging Conference, EMPC (2009)

DOI: 10.1109/iemt.2008.5507794

Google Scholar

[4] D. Andres, K. Weinberg, Numerical investigation of diffusion induced coarsening processes in binary alloys, IOP Conference Series: Mat. Sci.& Eng. 10 (2010)

DOI: 10.1088/1757-899x/10/1/012100

Google Scholar

[5] E. Barbieri, C. Patuelli, Eutectic structures of Ag-Cu after melting and solidification in microgravity and on earth, Metall. Trans.A. 19A (1988) 2659-2644

DOI: 10.1007/bf02645798

Google Scholar

[6] J. Zhao, D. Zhang, J. Zhao, Fabrication of Cu–Ag core–shell bimetallic superfine powders by eco-friendly reagents and structures characterization, J. Solid St. Chem. 184, 9 (2011) 2339–2344

DOI: 10.1016/j.jssc.2011.06.032

Google Scholar

[7] R. Xu, K. Zhou, M. Hu, Preparation of core-shell Cu-Ag bimetallic powder via electroless coating, J. Wuhan University Of Technology-Mat. Sci. Ed. 24, 4 (2009) 637-639

DOI: 10.1007/s11595-009-4637-0

Google Scholar

[8] R.H. Magruder III, D.H. Osborne Jr., R.A. Zuhr, Non-linear optical properties of nanometer dimension of Ag-Cu particles in silica formed by sequential ion implantation, J. Non-Cryst. Solids, 176 (1994) 299-303

DOI: 10.1016/0022-3093(94)90091-4

Google Scholar

[9] P. Prem Kiran, B. N. Shivakiran Bhaktha, D. Narayana Rao, Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag–Cu nanoclusters co-doped in SiO2 Sol-Gel films, J. Appl. Phys. 96, 11 (2004) 6717-6723

DOI: 10.1063/1.1804228

Google Scholar

[10] X. Hu, Z. Wang, T. Zhang, X. Zeng, W. Xu, J. Zhang, J. Yan, J. Zhang, L. Zhang, Manipulation of optical properties of Ag/Cu alloy nanowire arrays embedded in anodic alumina membranes, Appl. Surf. Sci. 254, 13, (2008) 3845–3848

DOI: 10.1016/j.apsusc.2007.12.006

Google Scholar

[11] W. Yu-Hua, L. Hui-Qing, L. Jian-Duo, W. Ru-Wu, Optical Limiting Properties of Ag-Cu Metal Alloy Nanoparticles Analysis by using MATLAB, Chinese Phys. Lett. 28, 11 (2011) 116101

DOI: 10.1088/0256-307x/28/11/116101

Google Scholar

[12] C.M.L. Wu et al., Developing a lead-free solder alloy Sn-Bi-Ag-Cu by MA, J. Electr. Mat. 29, 8 (2000)

Google Scholar

[13] C.C. Koch, Synthesis of nanostructured materials by MA: problems and opportunities, Nanostructured Mat. 9, 1-8 (1997) 13-22

Google Scholar

[14] S.-T. Kao, J.-G. Duh, Effect of Cu concentration on morphology of Sn-Ag-Cu solders by MA, J. Electr. Mat. 33, 12 (2004) 1445-1451

DOI: 10.1007/s11664-004-0085-y

Google Scholar

[15] L. Li, T. Qiu, J. Yang, X. Li, Study on Ag-Cu28 alloys synthesized by mechanical alloying, Powder Metall. Techn. 27, 1 (2009) 24-28

Google Scholar

[16] L. Li, T. Qiu, J. Yang, Y. Feng, Synthesis of Nanocrystalline Ag-Cu supersaturated solid solution by mechanical alloying, Adv. Mat. Res. 92, (2010) 271-276

DOI: 10.4028/www.scientific.net/amr.92.271

Google Scholar

[17] M. Maroni, B. Seifert, T. Lindvall, Air quality monographs, vol.3, Indoor air quality, Elsevier Science B.V., (1995)

DOI: 10.1016/s1382-3078(06)80001-6

Google Scholar

[18] S.M.S. Murshed, K.C. Leong, C. Yang, Thermophysical and electrokinetic properties of nanofluids – A critical view, Appl. Therm. Eng. 28, 17-18 (2008) 2109-2125

DOI: 10.1016/j.applthermaleng.2008.01.005

Google Scholar

[19] O. Gingu, P. Rotaru, P. Osiceanu, S. Tanasescu, Alex. Marin, C. Nicolicescu, G. Sima, A. Neacsu, Alex. Milea: submitted to Journal of Thermal Analysis and Catalysis (2012)

Google Scholar