The Dynamic Effects in Electrodeposited NiFe/Cu Wire with Preliminary Torsion

Article Preview

Abstract:

Ni80Fe20/Cu composite wires were produced under torsion using electrodeposition method. The total length of the magnetic film deposited onto 50 µm Cu wire is 3 cm and the thickness of the magnetic layer is about 10 µm. All samples showed single peak in magnetoimpedance (MI) curves. The magnitude (ΔZ/Z) % are 260%, 235% and 119% for samples produced under 22.4, 44.8, 89.7 rad/m torsion values, respectively at driving frequency of 160 kHz. MI effect magnitude decreases with increasing applied torsion during the electrodeposition process. A linear change in the second harmonics of output voltage from wire ends as a function of applied magnetic field (coil-less fluxgate effect) was observed in all sample. The sensitivity of coil-less output increases with increasing torsion and maximum sensitivity was observed in the sample produced at 89.7 rad/m torsion.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 190)

Pages:

243-246

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.V. Kurlyandskaya, N.G. Bebenin, V.O. Vaskovsky, Giant magnetoimpedance of wires with a thin magnetic coating, Physics of Metals and Matellograpy, 111 (2011) 133-154.

DOI: 10.1134/s0031918x11010200

Google Scholar

[2] M.H. Phan, H.X. Peng, Giant magnetoimpedance materials: Fundamentals and Applications, Progress in Materials Science, 53 (2008) 323-420.

DOI: 10.1016/j.pmatsci.2007.05.003

Google Scholar

[3] L.V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, J. Gonzalez, Magnetic field effects in artificial dielectrics with arrays of magnetic wires at microwaves, Journal of Applied Physics, 109 (2011) 053901.

DOI: 10.1063/1.3548937

Google Scholar

[4] M. Vazquez, M. Knobel, M.L. Sanchez, R. Valenzuela, A.P. Zhukov, Giant magnetoimpedance effect in soft magnetic wires for sensor applications, Sensors and Actuators A, 59 (1997) 20-29.

DOI: 10.1016/s0924-4247(97)80143-4

Google Scholar

[5] F.E. Atalay, S. Atalay, Giant magnetoimpedance effect in NiFe/Cu plated wire with various plating thicknesses, Journal of Alloys and Compounds, 392 (2005) 322-328.

DOI: 10.1016/j.jallcom.2004.09.024

Google Scholar

[6] M. Butta, P. Ripka, S. Atalay, F.E. Atalay, X.P. Xli, Fluxgate effect in twisted magnetic wire J. Magn. Magn. Mater. 320 (2008) e974–e978.

DOI: 10.1016/j.jmmm.2008.04.176

Google Scholar

[7] S. Atalay, N. Bayri, T. Izgi, F.E. Atalay, V.S. Kolat, Coil-less fluxgate effect in amorphous wires, Sensors and Actuators A, 158 (2010) 37–42.

DOI: 10.1016/j.sna.2009.12.028

Google Scholar

[8] S. Atalay, P. Ripka, N. Bayri, Coil-less fluxgate effect in (Co0. 94Fe0. 06)72. 5Si12. 5B15 amorphous wires, J. Magn. Magn. Mater. 322 (2010) 2238-2243.

DOI: 10.1016/j.jmmm.2010.02.018

Google Scholar

[10] J.P. Sinnecker, K.R. Pirota, M. Knobel, L. Kraus, AC magnetic transport on heterogeneous ferromagnetic wires and tubes, J. Magn. Magn. Mater. 249 (2002) 16– 21.

DOI: 10.1016/s0304-8853(02)00497-3

Google Scholar

[11] J. M. Blanco, A. Zhukov, A.P. Chen, A.F. Cobeño, A. Chizhik and J. Gonzalez, , Asymmetric torsion giant impedance in nearly-zero magnetostrictive amorphous wires with induced helical anisotropy Journal of Physics D: Applied Physics, L31–L34.

DOI: 10.1088/0022-3727/34/6/101

Google Scholar

[12] C. Gómez-Polo, J.G.S. Duque and M. Knobel, Journal of Physics: Nonlinear giant magnetoimpedance and the asymmetric circumferential magnetization process in soft magnetic wires Condensed Matter, 16 (2004) 5083–5094.

DOI: 10.1088/0953-8984/16/28/026

Google Scholar

[13] K. Mohri, S. Takeuchi, Sensitive bistable magnetic sensors using twisted amorphous magnetostrictive ribbons due to Matteucci effect, J. Appl. Phys. 53 (1982) 8386-8390.

DOI: 10.1063/1.330369

Google Scholar