Investigation of Multicritical Phenomena in Complex Models of Magnetics by Monte-Carlo Methods

Article Preview

Abstract:

The anisotropic Ising model with competing interactions is investigated in wide temperature range and |J1/J| parameters by means of Monte-Carlo methods. Static critical exponents of the magnetization, susceptibility, heat capacity, and correlation radius are calculated in the neighborhood of Lifshitz point. According to obtained results a phase diagram is plotted, the coordinates of Lifshitz point are defined, and a character of multicritical behavior of the system is detected.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 190)

Pages:

391-395

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.A. Fleury, Phase Transitions, Critical Phenomena, and Instabilities, Science. 211 (1981) 125-131.

DOI: 10.1126/science.211.4478.125

Google Scholar

[2] M.A. Anisimov, E.E. Gorodetskii, V.M. Zaprudskii, Phase transitions with coupled order parameters, Sov. Phys. Usp. (1981) 24 57–75.

DOI: 10.1070/pu1981v024n01abeh004612

Google Scholar

[3] Yu.A. Izumov, V.M. Siromyatnikov Phase Transitions and Crystal Symmetry M.: Science (1984).

Google Scholar

[4] W. Selke, The ANNNI model – Theoretical analysis and experimental application, Phys. Rep. 170 (1988) 213-264.

DOI: 10.1016/0370-1573(88)90140-8

Google Scholar

[5] R.M. Hornreich, M. Luban, S. Shtrikman, Critical Behavior at the Onset of k-Space Instability on the λ Line, Phys. Rev. Lett. 35 (1975) 1678-1681.

Google Scholar

[6] A. Gendiar and T. Nishino, Phase diagram of the three-dimensional axial next-nearest-neighbor Ising model, Phys. Rev. B. 71 (2005) 024404-024411.

DOI: 10.1103/physrevb.71.024404

Google Scholar

[7] S. Redner and H. E. Stanley, Helical order and its onset at the Lifshitz point, Phys. Rev. B. 16 (1977) 4901-4906.

DOI: 10.1103/physrevb.16.4901

Google Scholar

[8] P. Peszak, A. M. Ferrenberg, D. P. Landau, High-accuracy Monte Carlo study of the three-dimensional classical Heisenberg ferromagnet, Phys. Rev. B43 (1991) 6087-6093.

DOI: 10.1103/physrevb.43.6087

Google Scholar

[9] P. Bak, J. Boehm, Ising model with solitons, phasons, and the devil's staircase, Phys. Rev. B. 21 (1980) 5297-5308.

DOI: 10.1103/physrevb.21.5297

Google Scholar

[10] K. Kaski and W. Selke, Monte Carlo coarse graining for the three-dimensional axial next-nearest-neighbor Ising model, Phys. Rev. B. 31 (1985) 3128-3130.

DOI: 10.1103/physrevb.31.3128

Google Scholar

[11] M. Pleimling and M. Henkel, Anisotropic Scaling and Generalized Conformal Invariance at Lifshitz Points, Phys. Rev. Lett. 87 (2001) 125702-125706.

DOI: 10.1103/physrevlett.87.125702

Google Scholar

[12] A.K. Murtazaev, J.G. Ibaev, Critical characteristic of anisotropic Ising model with competing interactions, JETF 140 (2011) 123-130.

Google Scholar

[13] K. Binder, Critical Properties from Monte Carlo Coarse Graining and Renormalization, Phys. Rev. Lett. 47 (1981) 693-696.

DOI: 10.1103/physrevlett.47.693

Google Scholar

[14] A.K. Murtazaev, I.K. Kamilov, K.K. Aliev, Finite-size scaling and critical exponents of the real antiferromagnetic model, JMMM 204 (1999) 151-158.

DOI: 10.1016/s0304-8853(99)00168-7

Google Scholar

[15] R.J. Elliot, Phenomenological Discussion of Magnetic Ordering in the Heavy Rare-Earth Metals, Phys. Rev. 124 (1961) 346-353.

DOI: 10.1103/physrev.124.346

Google Scholar