New Ternary Boride EuRh4B4 Synthesized under High Pressure and Temperature

Article Preview

Abstract:

We report the results of a detailed study of EuRh4B4 compound synthesized by an un-common method under high pressure temperature conditions for the first time. Synthesized sample has been initially characterized by X-ray diffraction, macroscopic electrical resistivity and ac-susceptibility methods. The ferromagnetic and superconducting phases were found below 83K and 5.8K respectively. Element-and shell-selective XANES and XMCD techniques have been further applied to check the possible valence transition of Eu ions and their magnetic states. XANES spectra recorded at the Eu L2,3 absorption edges clearly indicate the presence of either magnetic Eu2+ or non-magnetic Eu3+ ions in the sample. The XMCD studies have also shown that local magnetic moments of Eu2+ ions exist in the superconducting EuRh4B4, at least above the transition.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 190)

Pages:

421-424

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.L. Ginzburg, Sov. Phys. JETP 4 (1957) 153.

Google Scholar

[2] P.W. Anderson, H. Suhl, Phys. Rev. 116 (1959) 898.

Google Scholar

[3] W.A. Fertig, D.C. Johnson, L.E. DeLong, et al, Phys. Rev. Lett. 38 (1977) 387.

Google Scholar

[4] M. Ishikawa, O. Fischer, Solid State Commun. 23 (1977) 37.

Google Scholar

[5] P.C. Canfield, S.L. Bud'ko, B.K. Cho, Physica C 262 (1996) 249.

Google Scholar

[6] S.S. Saxena et al, Nature (London) 406 (2000) 587.

Google Scholar

[7] D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, et al, Nature (London) 413 (2001) 613.

Google Scholar

[8] B. Matthias, E. Corenzwit, T. Vandenberg, H. Barz, PNAS U.S.A. 74 (1977) 1334.

Google Scholar

[9] T.M. Vandenberg, B.T. Matthias, PNAS U.S.A. 74 (1977) 1336.

Google Scholar

[10] D.C. Johnston, Solid State Commun. 24 (1977) 699.

Google Scholar

[11] P. G. Mattocks, D. Melville, J. Phys. F 8 (1978) 1291.

Google Scholar

[12] P. Rogel, Monatsh. Chem. 110 (1979) 235.

Google Scholar

[13] I. Felner, I. Nowik, Phys. Rev. Lett. 45 (1980) 2128.

Google Scholar

[14] A.V. Tsvyashchenko, J. Less-Common Met. 99 (1984) L9.

Google Scholar

[15] V. Sidorov, A. Tsvyashchenko, R. Sadykov, J. Phys.: Condens. Matter 21 (2009) 415701.

Google Scholar

[16] J. Goulon, N.B. Brookes, C. Gauthier, J. Goedkoop, C. Goulon-Ginet, M. Hagelstein, and A. Rogalev, Physica B 208&209 (1995).

DOI: 10.1016/0921-4526(95)00833-u

Google Scholar

[17] A.V. Tsvyashchenko, V.A. Sidorov, L.N. Fomicheva, E.D. Bauer, J.D. Thompson, Proceedings of the Moscow International Symposium on Magnetism 2008, Moscow (2008) 414.

Google Scholar

[18] M. Oko, I. Harada, K. Okada, Journal of Physics: Conf. Series 190 (2009) 012016.

Google Scholar

[19] M. Debessai, T. Matsuoka, J. J. Hamlin, et al, Phys. Rev. Lett. 102 (2009) 197002.

Google Scholar

[20] K. Matsubayashi, K. Munakata, M. Isobe, K. Ohgushi, Y Ueda, Y. Uwatoko, N. Katayama, N. Kawamura, M. Mizumaki, N. Ishimatsu, M. Hedo, I. Umehara, accepted to Phys. Rev. B (2011).

DOI: 10.1103/physrevb.84.024502

Google Scholar

[21] Y. Matsuda, T. Inami, K. Ohwada, Y. Murata, H. Nojiri, Y. Murakami, A. Mitsuda, H. Wada, H. Miyazaki, I. Harada, J. Phys. Soc. Jpn. 77 (2008) 054713.

DOI: 10.1143/jpsj.77.054713

Google Scholar

[22] B.T. Thole, P. Carra, F. Sette, G. van der Laan, Phys. Rev. Lett. 68 (1992) 1943; P. Carra, B.T. Thole, M. Altarelli, X. Wang, Phys. Rev. Lett. 70 (1993) 694.

DOI: 10.1103/physrevlett.68.1943

Google Scholar

[23] A. Smekhova, D. Ciuculescu, P. Lecante, F. Wilhelm, C. Amiens, A. Rogalev, B. Chaudret, Magnetics, IEEE Transactions on, 44 (2008) 2776.

DOI: 10.1109/tmag.2008.2001991

Google Scholar