2F5/2 Manifold Splitting of Ce3+ in PbCeX (X= Te, Se, S): A Magnetic Susceptibility Study

Article Preview

Abstract:

The magnetic susceptibility of Pb1-xCexX (X = S, Se and Te) crystals with several Cerium concentrations ranging from x = 0.006 to 0.036 has been measured between 2 K and 300 K. The experimental susceptibility curves were found to be consistent with a 2F5/2 lowest manifold for Ce3+ ions; the cubic crystal-field splitting values of 2F5/2 were estimated to be about 340 K, 440 K and 540 K for Pb1-xCexTe, Pb1-xCexSe, and Pb1-xCexS, respectively. For all the studied samples, it was found that the 7 doublet lies below the 8 quadruplet. These results confirm that Ce3+ ions substitute Pb2+ in the host crystals. Furthermore, the effective Landé factors were determined by X-band (~9.5 GHz) Electron Paramagnetic Measurements (EPR) to be g = 1.333, 1.364, and 1.402 for Ce ions in PbX, X = S, Se, and Te, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 190)

Pages:

545-549

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Shapira, S. Foner, P. Becla, D. N. Domingues, M. J. Naughton and J. S. Brooks, Phys. Rev. B33, 356 (1986).

Google Scholar

[2] S. Isber, M. Averous, Y. Shapira, V. Bindilatti, A. N. Anisimov, N. F. Oliveira, Jr., V. M. Orera and V. Demianiuk, Phys. Rev. B51, 15211 (1995).

DOI: 10.1103/physrevb.51.15211

Google Scholar

[3] M. Gorska and J. R. Anderson, Phys. Rev. B38, 9120 (1988).

Google Scholar

[4] A. Lewicki, J. Spalek and A. Mycielski, J. Phys. C20, 2005 (1987).

Google Scholar

[5] A. Jwardowski, J. Appl. Phys. 67, 5108 (1990).

Google Scholar

[6] S. Isber, P. Masri, S. Charar, X. Gratens and S. K. Misra, J. of Physics. C9, 10023 (1997).

Google Scholar

[7] V. Jovovic, S. J. Thiagarajan, J. West, J. P. Heremans, T. Story, Z. Golacki, W. Paszkowicz, and V. Osinniy, J. Appl. Physics 102, 043707 (2007).

DOI: 10.1063/1.2771048

Google Scholar

[8] J. P. Heremans, C. M. Thrush, and D. T. Morelli, J. Appl. Phys. 98, 063703 (2005).

Google Scholar

[9] J. Heremans and D. L. Partin, Phys. Rev. B 37, 6311 (1988).

Google Scholar

[10] S. Isber, S. Misra, S. Charar, X. Gratens, M. Averous, Z. Golacki, Phys. Rev. B56, 13724 (1997).

Google Scholar

[11] X. Gratens, S. Isber, S. Charar, C. Fau, M. Averous, S. K. Misra, Z. Golacki, M. Ferhat and J. Tedenac, Phys. Rev. B55, 8075 (1997); S. Isber, S. Charar, X. Gratens, C. Fau, M. Averous, S. K. Misra and Z. Golacki, Phys. Rev. B54, 7634 (1996).

DOI: 10.4028/www.scientific.net/msf.182-184.657

Google Scholar

[12] X. Gratens, E. ter Haar, V. Bindilatti, N.F. Oliveira, Y. Shapira, Z. Golacki, J . Magn Magn Mater 226, 2036 (2001).

DOI: 10.1016/s0304-8853(00)01079-9

Google Scholar

[13] X. Gratens, V. Bindilatti, V. A. Chitta, and N. F. Oliveira, Jr., S. Isber and Z. Golacki Phys. Rev. B79, 075207 (2009).

Google Scholar

[14] J. R. Anderson, G. Kido, Y. Nishina, M. Gorska, L. Kowalczyk and Z. Golacki, Phys. Rev. B 41, 1014 (1990).

Google Scholar

[15] J. A. Gaj, R. Planeland G. Fishman, Solid state Commun. 29, 435 (1979).

Google Scholar

[16] X. Gratens, V. Bindilatti, N.F. Oliveira, Z. Golacki, Physica B329-333, 1245 (2003).

Google Scholar

[17] F. Hulliger, B. Natterer and H. R. Ott, J. Magn. Magn. Matter. 8, 87 (1978).

Google Scholar

[18] H. R. Ott, J. K. Kjems and F. Hulliger, Phys. Rev. Lett. 42, 1378 (1979).

Google Scholar

[19] M. Gorska and J. R. Anderson, Acta Physica Polonica A75, 273 (1989).

Google Scholar