Plasticity and Microstructure of Hot Deformed Magnesium Alloy AZ61

Article Preview

Abstract:

The article presents the results of tests connected with the influence of strain parameters on the change of flow stress and microstructure of magnesium alloy AZ61 (symbol according to ASTM norms). Test of uniaxial hot compression were conducted in temperature range from 250 to 400°C and the strain speed from 0.01 to 1 s-1. Analysis of plastometric tests and microstructure observation allowed to establish which mechanism - slip or twinning – is dominant in particular conditions of shaping AZ61 alloy. Achieved results were compared with previous results achieved for AZ31 alloy type with lower content of aluminium.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 191)

Pages:

101-108

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Friedrich, S. Schumann, Research for a "new age of magnesium" in the automotive industry, Journal of Materials Processing Technology. 117 (2001) 276÷281.

DOI: 10.1016/s0924-0136(01)00780-4

Google Scholar

[2] R. Kawalla, Magnesium and magnesium alloys Monograph edited by Hadasik E., Manufactured of metals. Plasticity and structure. Silesian University and Technology, Gliwice, 2006.

Google Scholar

[3] B. L. Mordike, T. Ebert, Magnesium Properties - applications – potential, Materials Science and Engineering. A302 (2001) 37÷45.

Google Scholar

[4] J. Bohlen, D. Letzig K. Kainer U, New Perspectives for Wrought Magnesium Alloys, Materials Science Forum. 546-549 (2007) 1÷10.

DOI: 10.4028/www.scientific.net/msf.546-549.1

Google Scholar

[5] E. Hadasik., D. Kuc, G. Niewielski, R. Śliwa, Development of magnesium alloys for plastic working, Hutnik - Wiadomości Hutnicze 76. 8 (2009) 666÷670.

Google Scholar

[6] B. Jiang , J. Wang, P Ding, Ch Yang, Rolling of AZ31 Magnesium Alloy Thin Strip Materials Science Forum. 546-549 (2007) 365÷368.

DOI: 10.4028/www.scientific.net/msf.546-549.365

Google Scholar

[7] H. Somekawa, Dislocation creep behaviour in Mg-Al-Zn alloys, Materials Science and Engineering A. 407(2005) 53÷61.

DOI: 10.1016/j.msea.2005.06.059

Google Scholar

[8] M. M. Myshlyaev, H. J. McQueen, E. Konopleva, Microstructural development in Mg alloy AZ31 during hot working, Materials Science and Engineering A337 (2002) 121÷127.

DOI: 10.1016/s1359-6462(97)00344-8

Google Scholar

[9] D. Kuc , E. Hadasik, G. , A. Płachta, Structure and plasticity of the AZ31 magnesium alloy after hot deformation, Journal of Achievements in Materials and Manufacturing Engineering 27(2008) 27÷31.

Google Scholar

[10] D. Kuc, E. Hadasik, A. Szuła, Research of plasticity and microstructure of magnesium alloys AZ31 type in die – casting and hot rolling condition after deformation, Hutnik - Wiadomości Hutnicze, 76. 8 (2009) 666÷670.

Google Scholar

[11] L.A. Dobrzański, T. Tanski, L. Cizek, J. Madejski, The influence of the heat treatment on the microstructure and properties of Mg-Al-Zn based alloys, Archives of Materials Science and Engineering. 36/1 (2009) 48÷54.

Google Scholar

[12] I. Schindler J. Boruta, Determinig and using of activation energy for hot working processes, Archives of Metalurgy 4. (1994) 471÷491.

Google Scholar