Detection of Intermetallic Compounds in a Mg-5Al-3Ca-0.7Sr-0.2Mn Magnesium Alloy

Article Preview

Abstract:

In this paper the results of microstructural investigations and methodology of detection of intermetallic compounds were reported. The microstructural investigations included the light microscopy, scanning electron microscopy, chemical microanalysis and X-ray diffraction analysis. It was found that the microstructure of Mg-5Al-3Ca-0.7Sr-0.2Mn alloy consists of α-Mg, (Mg,Al)2Ca, Al3Mg13(Sr,Ca), Mg2Ca and Al2Ca intermetallic phases. The correct detection of these phases requires the high magnifications and a large number of measurements fields.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 197)

Pages:

137-142

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. -T. Son, J. -S. Lee, C. -S. Kang, J. -C. Bae, K. Yoshimi, K. Maruyama, The effects of yttrium element on microstructure and mechanical properties of Mg-5 mass%Al-3 mass%Ca based alloys fabricated by gravity casting and extrusion process, Mater. Trans. 49 (2008).

DOI: 10.2320/matertrans.mc200777

Google Scholar

[2] A.A. Luo, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Reviews 49(1) (2003) 13–30.

Google Scholar

[3] A. Suzuki, N.D. Saddock, J.W. Jones, T.M. Pollock, Structure and transition of eutectic (Mg, Al)2Ca Laves phase in a die-cast Mg–Al–Ca base alloy, Scr. Mater. 51 (2004) 1005-1010.

DOI: 10.1016/j.scriptamat.2004.07.011

Google Scholar

[4] Roskosz S., Adamiec J., Błotnicki M.: Influence of delivery state quality on microstructure and mechanical properties of as cast AZ91 Mg alloy. Arch. Foundry Eng. 7 (2007) 143-146.

Google Scholar

[5] S.M. Liang, R.S. Chen, J.J. Blandin, M. Suery, E.H. Han, Thermal analysis and solidification pathways of Mg–Al–Ca system alloys, Mater. Sci. and Eng. A 480 (2008) 365–372.

DOI: 10.1016/j.msea.2007.07.025

Google Scholar

[6] R. Ninomiya, T. Ojiro, K. Kubota, Improved heat resistance of Mg-Al alloys by the Ca addition, Acta Metall. Mater. 43 (1995) 669–674.

DOI: 10.1016/0956-7151(94)00269-n

Google Scholar

[7] D.W. Zhou, J.S. Liu, P. Peng, L. Chen, Y.J. Hu, A first-principles study on the structural stability of Al2Ca Al4Ca and Mg2Ca phases, Mater. Lett. 62 (2008) 206.

DOI: 10.1016/j.matlet.2007.04.110

Google Scholar

[8] A.A. Luo, M.P. Balogh, B.R. Powell Creep and microstructure of magnesium-aluminum-calcium based alloys, Metall. Mater. Trans. A 33A (2002) 567–574.

DOI: 10.1007/s11661-002-0118-1

Google Scholar

[9] A. Suzuki, N.D. Saddock, J.W. Jones, T.M. Pollock, Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys, Acta Mater. 53 (2005) 2823–2834.

DOI: 10.1016/j.actamat.2005.03.001

Google Scholar

[10] A. Suzuki, N.D. Saddock, L. Riester, E. Lara-Curzio, J.W. Jones, T.M. Pollock, Effect of Sr Additions on the Microstructure and Strength of a Mg-Al-Ca Ternary Alloy, Metall. Mater. Trans. A 38A (2007) 420-427.

DOI: 10.1007/s11661-006-9031-3

Google Scholar

[11] Buehler Ltd. Buehler's guide to materials preparation. Illinois, USA: The Argus Press, Niles, (2002).

Google Scholar

[12] M. M Avedesian, H. Baker (Eds), Magnesium and Magnesium Alloys, ASM Specialty Handbook, ASM International, (1999).

Google Scholar

[13] J. Szala. Application of computer-aided image analysis methods for a quantitative evaluation of material structure (in Polish). Silesian University of Technology, Gliwice, Poland, (2001).

Google Scholar

[14] Amerioun, SI Simak, U. Häussermann, Laves-phase structural changes in the system CaAl2-xMgx, Inorg. Chem. Mar. 42/5 (2003) 1467-1474.

DOI: 10.1021/ic020596m

Google Scholar

[15] T. Rzychoń, A. Kiełbus, G. Dercz, Structure refinement of the multi-phase Mg-Al-Sr alloy Solid State Phenom. 163 (2010) 169-172.

DOI: 10.4028/www.scientific.net/ssp.163.169

Google Scholar