Study of Structure and Strain in Au/Cu Systems Using Molecular Dynamics Simulation: X-Ray Scattering Analysis

Article Preview

Abstract:

The aim of this work is to investigate structure and stress evolution in Au/Cu bilayer systems during deposition. The approach used here is based on an embedded atom method (EAM). interatomic potential database for different metal elements, their alloys and multilayers. We applied the kinematical scattering theory to calculate the X-ray scattering profiles. In this case the X-ray scattering techniques are used for the structural characterization of crystal structures obtained from simulation data. This method was applied to determine the lattice parameters in any directions. The lattice parameters in deposited layers were directly determined by the analysis of X-ray diffraction profiles. Results shows that on the interface of Au/Cu system, the crystalline lattice of Au layer is fitted to crystalline lattice of Cu layer. We found that deformation of the crystal lattice near the interface has a major influence on the stress.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 203-204)

Pages:

142-145

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. D. Tsai and C. T. Lee: J. Electron. Mater. Vol. 30 (2001), p.59

Google Scholar

[2] S.-C. Lee, N. M. Hwang, B. D. Yu, and D.-Y. Kim: J. Cryst. Growth Vol. 223 (2001), p.311

Google Scholar

[3] Ch-W. Pao, S. M. Foiles, E. B. Webb, D. J. Srolovitz and J. A. Floro: Phys. Rev. B Vol. 79 (2009), p.224113

Google Scholar

[4] S. D. Chen, A. K. Soh, and F. J. Ke: Scripta Materialia Vol. 52 (2005), p.1135

Google Scholar

[5] M. Pletea, W. Brückner, H. Wendrock, J. Thomas, R. Kaltofen, and R. Koch: J. Appl. Phys Vol. 101 (2007), p.73511

Google Scholar

[6] Y. P. Lia, G. P. Zhang, and Z. G. Wang: Adv. Mater. Res. Vols. 41-42 (2008), p.3

Google Scholar

[7] M. S. Daw and M. I. Baskes: Phys. Rev. B Vol. 29 (1984), p.6443

Google Scholar

[8] T. Zientarski and D. Chocyk: J. Nanosci. Nanotechnol. (2012), in press.

Google Scholar

[9] S. M. Foiles, M. I. Baskes, and M. S. Daw: Phys. Rev. B Vol. 33 (1986), p.7983

Google Scholar

[10] Z. S. Pereira and E. Z. da Silva: Phys. Rev. B Vol. 79 (2009), p.115404

Google Scholar

[11] Z-H. Hong, S-F. Hwang and T-H. Fang: Comput. Mater. Sci. Vol. 41 (2007), p.70

Google Scholar

[12] F. H. Stillinger and T. A. Weber: Phys. Rev. B Vol. 31 (1985), p.5262

Google Scholar

[13] H. N. G. Wadley, X. W. Zhou, R. A. Johnson, and M. Neurock: Prog. Mater. Sci. Vol. 46 (2001), p.329

Google Scholar

[14] M. Zhou: Proc. R. Soc. Lond. A Vol. 459 (2003), p.2347

Google Scholar

[15] J.M. Cowley, Diffraction Physics (Elsevier, Amsterdam 1995)

Google Scholar

[16] D. Chocyk and G. Gladyszewski: Electron Technology Vol. 31 (1998), p.393

Google Scholar