Rietveld Analysis of Aurivillius-Type Structure Ceramics Synthesized from Precursors Prepared by Classical and HEBM Methods

Article Preview

Abstract:

The aim of this study was to analyze the influence of the method of preparing the substrates in the form of simple oxides for the structure of the final Bi5Ti3FeO15 ceramics. Milling of the substrates was carried out by two methods: the classical one by hand mixing in a porcelain mortar, and by high-energy. Structure studies were performed by the X-ray diffraction (XRD) method. XRD patterns were analyzed with the Rietveld method using the DBWS 9807a program. It was found out that the slightest deviation of the network parameters from the catalog data occurs for the sample obtained from simple oxides by free sintering (BTFs). Furthermore, it was also determined that the optimal high-energy time of the substrates is 5 hours. When compared to the ICDD catalog data, the resulting ceramics is a single phase one and has the lowest network parameters deviation among all samples which were subject to high-energy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 203-204)

Pages:

319-322

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Mahesh Kumar, V. R. Palkar, K. Srinivas, S. V. Suryanarayana, Appl. Phys. Lett. 76, (2006), p.2764

Google Scholar

[2] A. P. Douvalis, M. Venkatesan, P. Velasco, C. B. Fitzgerald, J.M.D. Coey, J. Appl. Phys. 93, (2003), p.8071

Google Scholar

[3] G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaja, Fiz. Tverd. Tela, 1, (1959), p.169

Google Scholar

[4] X.Y. Zhang, J.Y. Dai, Sol. St. Chem, 33, (2005), p.147

Google Scholar

[5] Aurivillius, Arkh. Khemi. 1, (1949), p.499

Google Scholar

[6] Aurivillius, Arkh. Khemi. 2, (1950), p.512

Google Scholar

[7] G. Dercz, J. Dercz, K. Prusik, A. Hanc, L. Pająk, J. Ilczuk, Arch. Metall. Mater. 54, (2009), p.741

Google Scholar

[8] E.C. Subbarao, Bull. Am. Phys. Soc. 5, (1960), p.423

Google Scholar

[9] E.C. Subbarao, J. Chem. Phys. 34, (1961), p.695

Google Scholar

[10] L.G. Van Uitert, L.Egerton, J. Appl. Phys. 32, (1961), p.959

Google Scholar

[11] S.F. Cummins L.E. Cross, J. Appl. Phys. Lett. 10, (1967), p.14

Google Scholar

[12] F. Jona, G. Shirane, Ferroelectric crystals, (Pergamon Press, Oxford, 1962)

Google Scholar

[13] M.I. Morozov, L.P. Mezentseva, and V.V. Gusarov, Russ. J. Gen. Chem. 72, (2002), p.1038

Google Scholar

[14] J. Dercz, G. Dercz, K. Prusik, B. Solecka, A. Starczewska, J. Ilczuk, Int. J. Thermophys. 31 (2009), p.42

DOI: 10.1007/s10765-009-0691-2

Google Scholar

[15] J. Dercz, A. Starczewska, G. Dercz, Int. J. Thermophys. 32, (2011), p.746

Google Scholar

[16] K. Sunahara, J. Yano, K. Kakegawa, J. Europ. Cer. Soc. 26, (2006), p.623

Google Scholar

[17] Machura, J. Rymarczyk, J. Ilczuk, Europ. Phys. J. 154, (2008), p.131

Google Scholar

[18] R. Takahashi, Y. Yonezawa, M. Ohtani, M. Kawasaki,Y. Matsumoto, H. Koinuma, Appl. Surf. Sci. 252, (2006), p.2477

Google Scholar

[19] C. Subbarao, J. Am. Ceram. Soc. 45, (1962), pp.1-66.

Google Scholar

[20] H.M. Rietveld, J. Appl. Cryst. 3 (1969), p.65

Google Scholar

[21] R.A. Young, D.B. Wiles, Adv. in X-Ray Anal. 24 (1980) p.1

Google Scholar

[22] R.A. Young, The Rietveld method, (Oxford University Press, 1993)

Google Scholar

[23] T. Rzychoń, A. Kiełbus, G. Dercz, Sol. St. Phenom. 163 (2010), p.169

Google Scholar

[24] R.J. Hill, C.J. Howard, J. Appl. Cryst. 20 (1987), p.467

Google Scholar

[25] G. Dercz, D. Oleszak, K. Prusik, L. Pająk, Rev. Adv. Mater. Sci. 8 (2008), p.764

Google Scholar