Microstructure of the Fe-Ni-P Melt-Spun Ribbons Produced from the Single-Chamber and from the Double-Chamber Crucibles

Article Preview

Abstract:

The aim of the work was to investigate the influence of the processing on the final microstructure of the melt-spun Ni-Fe-P ribbons. The melt-spinning was carried out in two ways. For the first one the alloy was molten in a simple single-chamber crucible and for the second one double-chamber crucible was used. The chemical composition of the alloy molten in the single chamber was Ni40Fe40P20. The two component melt-spinning was made starting from the Ni80P20 and Fe80P20 alloys. All of the three alloys were molten in titanium gettered argon atmosphere starting from 99.95 wt % Ni, 99.95 wt % Fe, Ni-P and Fe-P master alloys in the arc melting furnace. The alloys were melt-spun in helium. The phase composition and the microstructure of the melt-spun ribbons were investigated by X-ray diffraction (XRD), a transmission electron microscope (TEM), respectively. The fracture of the specimens were observed with use of scanning electron microscope (SEM). SEM observations of the fracture surfaces show different character of the fractured samples.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 203-204)

Pages:

361-367

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Szuecs, C.P. Kim, W.L. Johnson, Acta Materialia, 49/9 (2001), p.1507

Google Scholar

[2] H. Tan, Y. Zhang, Y. Li, Intermetalics, 10 (2002), p.1203

Google Scholar

[3] H. Tan, Y. Zhang, X. Hu, Y. Li, Ann Chim Sci Mat, 27(5) (2002), p.119

Google Scholar

[4] X. Hu, S.C. Ng, Y.P. Feng, Y. Li, Acta Materialia, 51 (2003), p.561

Google Scholar

[5] U. Kühn, J. Eckert, N. Mattern, L. Schultz, Applied Physics Letters, 81 (2002), p.1020

Google Scholar

[6] C. Fan, R.T. Ott, T.C. Hufnagel, Applied Physics Letters, 80 (2002), p.2478

Google Scholar

[7] K. Ziewiec, Z. Kędzierski, J. Alloys Compd,480 (2009), p.306–310

Google Scholar

[8] K. Ziewiec, 355 (2009), p.2540

Google Scholar

[9] K. Ziewiec, Z. Kędzierski, A. Zielińska-Lipiec, J. Stępiński, S. Kąc, Journal of Alloys and Compounds, 482 (2009), p.114

DOI: 10.1016/j.jallcom.2009.04.049

Google Scholar

[10] K. Ziewiec, P. Malczewski, G. Boczkal, K. Prusik, Solid State Phenomena, 186 (2012), p.216

DOI: 10.4028/www.scientific.net/ssp.186.216

Google Scholar

[11] A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkubo, K. Hono, Acta Materialia, 52 (2004), p.2441

DOI: 10.1016/j.actamat.2004.01.036

Google Scholar

[12] E.S. Park, E.Y. Jeong, J.-K. Lee, J.C. Bae, A.R. Kwon, A. Gebert, L. Schultz, H.J. Chang and D.H. Kim, Scripta Materialia, 56 (2007), p.197

DOI: 10.1016/j.scriptamat.2006.10.020

Google Scholar

[13] Concustell, N. Mattern, H. Wendrock, U. Kuehn, A. Gebert, J. Eckert, A.L. Greer, J. Sort and M.D. Baró, Scripta Materialia, 56 (2007), p.85

DOI: 10.1016/j.scriptamat.2006.09.026

Google Scholar

[14] F.R. Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion and structure, Cohesion in metals, vol. 1, (Amsterdam; Elsevier Science, 1988)

Google Scholar

[15] S.X. Jiang, R.H. Guo, Surface & Coatings Technology, 205 (2011), p.4274

Google Scholar

[16] B Rajesh, N. Sasirekha, Y.-W. Chen, Journal of Molecular Catalysis A: Chemical, 275(2007), p.174

Google Scholar

[17] F. Spaepen, Acta Metallurgica, 25(1977), p.407

Google Scholar