Luminescence and Time-Resolved Emission Spectra of Nd3+and Er3+: Silver Zinc Borate Glasses

Article Preview

Abstract:

The paper reports the visible-NIR luminescence and time-resolved emission spectral profiles of Nd3+, and Er3+ doped silver zinc borate glasses. Steady state luminescence (SSL) and time-resolved emission spectroscopy (TRES) were used to evaluate how the randomness of the network can influence the emission from rare earth ions in the visible region. As expected the composition of the glasses strongly influences the emission bands of the dopant ions. The lack of homogeneity in the glass network results in distorted and broad luminescence spectra. Moreover, time-resolved techniques allowed the visualization of the time dependence of the spectra. The luminescence was also characterized using steady state techniques and the strongest NIR emission peaks were 4F3/24Il1/2 for Nd 3+ and 4I13/24Il5/2 for Er 3+ ions respectively.Key words: Time-resolved emission spectra; decay associated spectra; Nd3+ and Er3+; Silver zinc borate glasses

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 207)

Pages:

37-53

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bünzli JCG. Benefiting from the unique properties of lanthanide ions. Acc Chem Res. 2006;39:53-61.

DOI: 10.1021/ar0400894

Google Scholar

[2] Starck M, Kadjane P, Bois E, Darbouret B, Incamps A, Ziessel R, et al. Towards Libraries of Luminescent Lanthanide Complexes and Labels from Generic Synthons. Chemistry-A European Journal. 2011;17:9164-79.

DOI: 10.1002/chem.201100390

Google Scholar

[3] Bünzli JCG, Piguet C. Light Conversion: Organized Lanthanide-containing Molecular Systems. In: Editors-in-Chief:   KHJB, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, et al., editors. Encyclopedia of Materials: Science and Technology (Second Edition). Oxford: Elsevier; 2001. pp.4465-76.

DOI: 10.1016/b0-08-043152-6/00784-1

Google Scholar

[4] Murata T, Moriyama Y, Morinaga K. Relationship between the local structure and spontaneous emission probability of Er3+ in silicate, borate, and phosphate glasses. Science and Technology of Advanced Materials. 2000;1:139-45.

DOI: 10.1016/s1468-6996(00)00014-0

Google Scholar

[5] Aseev V, Varaksa Y, Klement'eva A, Kolobkova E, Nikonorov N, Sinitsyn G, et al. Spectral luminescence and information characteristics of transparent lead fluoride nano-glass-ceramics doped with erbium ions. Optics and Spectroscopy. 2010;108:720-7.

DOI: 10.1134/s0030400x10050097

Google Scholar

[6] Coelho J, Hungerford G, Hussain NS. Structural and time resolved emission spectra of Er3+: Silver lead borate glass. Chem Phys Lett. 2011;512:70-5.

DOI: 10.1016/j.cplett.2011.07.019

Google Scholar

[7] Hänninen P, Härmä H. Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects: Springer; 2011.

DOI: 10.1007/978-3-642-21023-5

Google Scholar

[8] Akiyama N, Muramatsu S, Ide S, Ohkura H. Hot luminescence from F centers in KCl studied by time-resolved polarization spectroscopy. J Lumin. 2000;87:568-70.

DOI: 10.1016/s0022-2313(99)00297-5

Google Scholar

[9] Marmodée B, De Klerk JS, Ariese F, Gooijer C, Kumke MU. High-resolution steady-state and time-resolved luminescence studies on the complexes of Eu (III) with aromatic or aliphatic carboxylic acids. Anal Chim Acta. 2009;652:285-94.

DOI: 10.1016/j.aca.2009.06.006

Google Scholar

[10] Prakash GV. Absorption spectral studies of rare earth ions (Pr3+, Nd3+, Sm3+, Dy3+, Ho3+ and Er3+) doped in NASICON type phosphate glass, Na4AlZnP3O12. Mater Lett. 2000;46:15-20.

DOI: 10.1016/s0167-577x(00)00135-x

Google Scholar

[11] Ivankov A, Seekamp J, Bauhofer W. Optical properties of Eu3+-doped zinc borate glasses. J Lumin. 2006;121:123-31.

DOI: 10.1016/j.jlumin.2005.11.002

Google Scholar

[12] Rocha J, Carlos LD, Paz FAA, Ananias D. Luminescent multifunctional lanthanides-based metal–organic frameworks. Chem Soc Rev. 2010.

DOI: 10.1039/c0cs00130a

Google Scholar

[13] Coelho J, Azevedo J, Hungerford G, Hussain NS. Luminescence and decay trends for NIR transition (4I13/2→4Il5/2) at 1.5μm in Er3+-doped LBT glasses. Opt Mater. 2011;33:1167-73.

DOI: 10.1016/j.optmat.2011.02.003

Google Scholar

[14] Sun L, Li AH, Guo FY, Lü Q, Xu YH, Zhao LC. Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er: LiNbO crystals heavily codoped with MgO. Appl Phys Lett. 2007;91:071914.

DOI: 10.1063/1.2769749

Google Scholar

[15] Davenport L, Knutson JR, Brand L. Excited-state proton transfer of equilenin and dihydroequilenin: interaction with bilayer vesicles. Biochemistry. 1986;25:1186-95.

DOI: 10.1021/bi00353a037

Google Scholar

[16] Grinberg M, Holliday K. Luminescence kinetics and emission lifetime distribution of Cr 3+-doped aluminosilicate glass. J Lumin. 2001;92:277-86.

DOI: 10.1016/s0022-2313(01)00163-6

Google Scholar

[17] Aoki T, Komedoori S, Kobayashi S, Shimizu T, Ganjoo A, Shimakawa K. Photoluminescence lifetime distributions of chalcogenide glasses obtained by wide-band frequency resolved spectroscopy. J Non-Cryst Solids. 2003;326:273-8.

DOI: 10.1016/s0022-3093(03)00407-1

Google Scholar

[18] Tsallis C. Nonadditive entropy and nonextensive statistical mechanics-An overview after 20 years. Brazilian Journal of Physics. 2009;39:337-56.

DOI: 10.1590/s0103-97332009000400002

Google Scholar

[19] Wlodarczyk J, Kierdaszuk B. Interpretation of fluorescence decays using a power-like model. Biophysical journal. 2003;85:589-98.

DOI: 10.1016/s0006-3495(03)74503-2

Google Scholar

[20] Rolinski OJ, Birch DJS. Nonextensive kinetics of fluorescence resonance energy transfer. J Chem Phys. 2008;129:144507.

Google Scholar

[21] Thulasiramudu A, Buddhudu S. Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses. Spectrochim Acta, Part A. 2007;66:323-8.

DOI: 10.1016/j.saa.2006.02.060

Google Scholar

[22] Coelho J, Freire C, Hussain NS. Structural studies of lead lithium borate glasses doped with silver oxide. Spectrochim Acta, Part A. 2012;86:392-8.

DOI: 10.1016/j.saa.2011.10.054

Google Scholar

[23] Azevedo J, Coelho J, Hungerford G, Sooraj Hussain N. Lasing transition (4F3/2→4I11/2) at 1.06μm in neodymium oxide doped lithium boro tellurite glass. Physica B. 2010;405:4696-701.

DOI: 10.1016/j.physb.2010.08.066

Google Scholar

[24] Karthikeyan B, Mohan S. Spectroscopic and glass transition investigations on Nd3+-doped NaF–Na2O–B2O3 glasses. Mater Res Bull. 2004;39:1507-15.

DOI: 10.1016/j.materresbull.2004.04.025

Google Scholar

[25] Srinivasa Rao A, Rupa Venkateswara Rao B, Prasad MVVKS, Shanmukha Kumar JV, Jayasimhadri M, Rao JL, et al. Spectroscopic and optical properties of Nd3+ doped fluorine containing alkali and alkaline earth zinc-aluminophosphate optical glasses. Physica B. 2009;404:3717-21.

DOI: 10.1016/j.physb.2009.06.114

Google Scholar

[26] Yang J, Dai S, Zhou Y, Wen L, Hu L, Jiang Z. Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier. Journal of applied physics. 2003;93:977-83.

DOI: 10.1063/1.1531840

Google Scholar

[27] Fan H, Wang G, Li K, Hu L. Broadband 1.5- emission of high erbium-doped Bi2O3–B2O3–Ga2O3 glasses. Solid State Communications. 2010;150:1101-3.

DOI: 10.1016/j.ssc.2010.03.031

Google Scholar

[28] Artizzu F, Mercuri ML, Serpe A, Deplano P. NIR-emissive Erbium Quinolinolate Complexes. Coord Chem Rev. 2011.

DOI: 10.1016/j.ccr.2011.01.013

Google Scholar

[29] Gaft M, Reisfeld R, Panczer G. Luminescence spectroscopy of minerals and materials: Springer Verlag; 2005.

Google Scholar

[30] Reisfeld R. Radiative and non-radiative transitions of rare-earth ions in glasses. Rare Earths. 1975:123-75.

DOI: 10.1007/bfb0116557

Google Scholar

[31] Malkin BZ, Pukhov KK, Saikin SK, Baibekov EI, Zakirov AR. Theoretical studies of nonradiative 4f–4f multiphonon transitions in dielectric crystals containing rare earth ions. J Mol Struct. 2007;838:170-5.

DOI: 10.1016/j.molstruc.2007.01.009

Google Scholar

[32] Layne C, Lowdermilk W, Weber MJ. Multiphonon relaxation of rare-earth ions in oxide glasses. Phys Rev B: Condens Matter. 1977;16:10.

DOI: 10.1103/physrevb.16.10

Google Scholar

[33] Carnall W, Fields P, Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr, Nd, Pm, Sm, Dy, Ho, Er, and Tm. J Chem Phys. 1968;49:4424.

DOI: 10.1063/1.1669894

Google Scholar

[34] Sveshnikova E, Ermolaev V. Inductive-resonant theory of nonradiative transitions in lanthanide and transition metal ions (review). Optics and Spectroscopy. 2011;111:34-50.

DOI: 10.1134/s0030400x11070186

Google Scholar

[35] Reisfeld R, Saraidarov T, Ziganski E, Gaft M, Lis S, Pietraszkiewicz M. Intensification of rare earths luminescence in glasses. J Lumin. 2003;102–103:243-7.

DOI: 10.1016/s0022-2313(02)00506-9

Google Scholar

[36] Reisfeld R. Optical Properties of Rare Earth and Transition Element Doped Glasses. In: Editors-in-Chief:   KHJB, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, et al., editors. Encyclopedia of Materials: Science and Technology (Second Edition). Oxford: Elsevier; 2001. pp.6472-7.

DOI: 10.1016/b0-08-043152-6/01145-1

Google Scholar

[37] Rajeswari R, Babu SS, Jayasankar CK. Spectroscopic characterization of alkali modified zinc-tellurite glasses doped with neodymium. Spectrochim Acta, Part A. 2010;77:135-40.

DOI: 10.1016/j.saa.2010.04.040

Google Scholar

[38] Choi JH, Margaryan A, Margaryan A, Shi FG. Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass. J Lumin. 2005;114:167-77.

DOI: 10.1016/j.jlumin.2004.12.015

Google Scholar

[39] Fleming GR, Gijzeman OLJ, Freed KF, Lin SH. Theory for time resolved emission spectra. J Chem Soc, Faraday Trans 2. 1975;71:773-80.

DOI: 10.1039/f29757100773

Google Scholar