[1]
Bünzli JCG. Benefiting from the unique properties of lanthanide ions. Acc Chem Res. 2006;39:53-61.
DOI: 10.1021/ar0400894
Google Scholar
[2]
Starck M, Kadjane P, Bois E, Darbouret B, Incamps A, Ziessel R, et al. Towards Libraries of Luminescent Lanthanide Complexes and Labels from Generic Synthons. Chemistry-A European Journal. 2011;17:9164-79.
DOI: 10.1002/chem.201100390
Google Scholar
[3]
Bünzli JCG, Piguet C. Light Conversion: Organized Lanthanide-containing Molecular Systems. In: Editors-in-Chief: KHJB, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, et al., editors. Encyclopedia of Materials: Science and Technology (Second Edition). Oxford: Elsevier; 2001. pp.4465-76.
DOI: 10.1016/b0-08-043152-6/00784-1
Google Scholar
[4]
Murata T, Moriyama Y, Morinaga K. Relationship between the local structure and spontaneous emission probability of Er3+ in silicate, borate, and phosphate glasses. Science and Technology of Advanced Materials. 2000;1:139-45.
DOI: 10.1016/s1468-6996(00)00014-0
Google Scholar
[5]
Aseev V, Varaksa Y, Klement'eva A, Kolobkova E, Nikonorov N, Sinitsyn G, et al. Spectral luminescence and information characteristics of transparent lead fluoride nano-glass-ceramics doped with erbium ions. Optics and Spectroscopy. 2010;108:720-7.
DOI: 10.1134/s0030400x10050097
Google Scholar
[6]
Coelho J, Hungerford G, Hussain NS. Structural and time resolved emission spectra of Er3+: Silver lead borate glass. Chem Phys Lett. 2011;512:70-5.
DOI: 10.1016/j.cplett.2011.07.019
Google Scholar
[7]
Hänninen P, Härmä H. Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects: Springer; 2011.
DOI: 10.1007/978-3-642-21023-5
Google Scholar
[8]
Akiyama N, Muramatsu S, Ide S, Ohkura H. Hot luminescence from F centers in KCl studied by time-resolved polarization spectroscopy. J Lumin. 2000;87:568-70.
DOI: 10.1016/s0022-2313(99)00297-5
Google Scholar
[9]
Marmodée B, De Klerk JS, Ariese F, Gooijer C, Kumke MU. High-resolution steady-state and time-resolved luminescence studies on the complexes of Eu (III) with aromatic or aliphatic carboxylic acids. Anal Chim Acta. 2009;652:285-94.
DOI: 10.1016/j.aca.2009.06.006
Google Scholar
[10]
Prakash GV. Absorption spectral studies of rare earth ions (Pr3+, Nd3+, Sm3+, Dy3+, Ho3+ and Er3+) doped in NASICON type phosphate glass, Na4AlZnP3O12. Mater Lett. 2000;46:15-20.
DOI: 10.1016/s0167-577x(00)00135-x
Google Scholar
[11]
Ivankov A, Seekamp J, Bauhofer W. Optical properties of Eu3+-doped zinc borate glasses. J Lumin. 2006;121:123-31.
DOI: 10.1016/j.jlumin.2005.11.002
Google Scholar
[12]
Rocha J, Carlos LD, Paz FAA, Ananias D. Luminescent multifunctional lanthanides-based metal–organic frameworks. Chem Soc Rev. 2010.
DOI: 10.1039/c0cs00130a
Google Scholar
[13]
Coelho J, Azevedo J, Hungerford G, Hussain NS. Luminescence and decay trends for NIR transition (4I13/2→4Il5/2) at 1.5μm in Er3+-doped LBT glasses. Opt Mater. 2011;33:1167-73.
DOI: 10.1016/j.optmat.2011.02.003
Google Scholar
[14]
Sun L, Li AH, Guo FY, Lü Q, Xu YH, Zhao LC. Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er: LiNbO crystals heavily codoped with MgO. Appl Phys Lett. 2007;91:071914.
DOI: 10.1063/1.2769749
Google Scholar
[15]
Davenport L, Knutson JR, Brand L. Excited-state proton transfer of equilenin and dihydroequilenin: interaction with bilayer vesicles. Biochemistry. 1986;25:1186-95.
DOI: 10.1021/bi00353a037
Google Scholar
[16]
Grinberg M, Holliday K. Luminescence kinetics and emission lifetime distribution of Cr 3+-doped aluminosilicate glass. J Lumin. 2001;92:277-86.
DOI: 10.1016/s0022-2313(01)00163-6
Google Scholar
[17]
Aoki T, Komedoori S, Kobayashi S, Shimizu T, Ganjoo A, Shimakawa K. Photoluminescence lifetime distributions of chalcogenide glasses obtained by wide-band frequency resolved spectroscopy. J Non-Cryst Solids. 2003;326:273-8.
DOI: 10.1016/s0022-3093(03)00407-1
Google Scholar
[18]
Tsallis C. Nonadditive entropy and nonextensive statistical mechanics-An overview after 20 years. Brazilian Journal of Physics. 2009;39:337-56.
DOI: 10.1590/s0103-97332009000400002
Google Scholar
[19]
Wlodarczyk J, Kierdaszuk B. Interpretation of fluorescence decays using a power-like model. Biophysical journal. 2003;85:589-98.
DOI: 10.1016/s0006-3495(03)74503-2
Google Scholar
[20]
Rolinski OJ, Birch DJS. Nonextensive kinetics of fluorescence resonance energy transfer. J Chem Phys. 2008;129:144507.
Google Scholar
[21]
Thulasiramudu A, Buddhudu S. Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses. Spectrochim Acta, Part A. 2007;66:323-8.
DOI: 10.1016/j.saa.2006.02.060
Google Scholar
[22]
Coelho J, Freire C, Hussain NS. Structural studies of lead lithium borate glasses doped with silver oxide. Spectrochim Acta, Part A. 2012;86:392-8.
DOI: 10.1016/j.saa.2011.10.054
Google Scholar
[23]
Azevedo J, Coelho J, Hungerford G, Sooraj Hussain N. Lasing transition (4F3/2→4I11/2) at 1.06μm in neodymium oxide doped lithium boro tellurite glass. Physica B. 2010;405:4696-701.
DOI: 10.1016/j.physb.2010.08.066
Google Scholar
[24]
Karthikeyan B, Mohan S. Spectroscopic and glass transition investigations on Nd3+-doped NaF–Na2O–B2O3 glasses. Mater Res Bull. 2004;39:1507-15.
DOI: 10.1016/j.materresbull.2004.04.025
Google Scholar
[25]
Srinivasa Rao A, Rupa Venkateswara Rao B, Prasad MVVKS, Shanmukha Kumar JV, Jayasimhadri M, Rao JL, et al. Spectroscopic and optical properties of Nd3+ doped fluorine containing alkali and alkaline earth zinc-aluminophosphate optical glasses. Physica B. 2009;404:3717-21.
DOI: 10.1016/j.physb.2009.06.114
Google Scholar
[26]
Yang J, Dai S, Zhou Y, Wen L, Hu L, Jiang Z. Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier. Journal of applied physics. 2003;93:977-83.
DOI: 10.1063/1.1531840
Google Scholar
[27]
Fan H, Wang G, Li K, Hu L. Broadband 1.5- emission of high erbium-doped Bi2O3–B2O3–Ga2O3 glasses. Solid State Communications. 2010;150:1101-3.
DOI: 10.1016/j.ssc.2010.03.031
Google Scholar
[28]
Artizzu F, Mercuri ML, Serpe A, Deplano P. NIR-emissive Erbium Quinolinolate Complexes. Coord Chem Rev. 2011.
DOI: 10.1016/j.ccr.2011.01.013
Google Scholar
[29]
Gaft M, Reisfeld R, Panczer G. Luminescence spectroscopy of minerals and materials: Springer Verlag; 2005.
Google Scholar
[30]
Reisfeld R. Radiative and non-radiative transitions of rare-earth ions in glasses. Rare Earths. 1975:123-75.
DOI: 10.1007/bfb0116557
Google Scholar
[31]
Malkin BZ, Pukhov KK, Saikin SK, Baibekov EI, Zakirov AR. Theoretical studies of nonradiative 4f–4f multiphonon transitions in dielectric crystals containing rare earth ions. J Mol Struct. 2007;838:170-5.
DOI: 10.1016/j.molstruc.2007.01.009
Google Scholar
[32]
Layne C, Lowdermilk W, Weber MJ. Multiphonon relaxation of rare-earth ions in oxide glasses. Phys Rev B: Condens Matter. 1977;16:10.
DOI: 10.1103/physrevb.16.10
Google Scholar
[33]
Carnall W, Fields P, Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr, Nd, Pm, Sm, Dy, Ho, Er, and Tm. J Chem Phys. 1968;49:4424.
DOI: 10.1063/1.1669894
Google Scholar
[34]
Sveshnikova E, Ermolaev V. Inductive-resonant theory of nonradiative transitions in lanthanide and transition metal ions (review). Optics and Spectroscopy. 2011;111:34-50.
DOI: 10.1134/s0030400x11070186
Google Scholar
[35]
Reisfeld R, Saraidarov T, Ziganski E, Gaft M, Lis S, Pietraszkiewicz M. Intensification of rare earths luminescence in glasses. J Lumin. 2003;102–103:243-7.
DOI: 10.1016/s0022-2313(02)00506-9
Google Scholar
[36]
Reisfeld R. Optical Properties of Rare Earth and Transition Element Doped Glasses. In: Editors-in-Chief: KHJB, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, et al., editors. Encyclopedia of Materials: Science and Technology (Second Edition). Oxford: Elsevier; 2001. pp.6472-7.
DOI: 10.1016/b0-08-043152-6/01145-1
Google Scholar
[37]
Rajeswari R, Babu SS, Jayasankar CK. Spectroscopic characterization of alkali modified zinc-tellurite glasses doped with neodymium. Spectrochim Acta, Part A. 2010;77:135-40.
DOI: 10.1016/j.saa.2010.04.040
Google Scholar
[38]
Choi JH, Margaryan A, Margaryan A, Shi FG. Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass. J Lumin. 2005;114:167-77.
DOI: 10.1016/j.jlumin.2004.12.015
Google Scholar
[39]
Fleming GR, Gijzeman OLJ, Freed KF, Lin SH. Theory for time resolved emission spectra. J Chem Soc, Faraday Trans 2. 1975;71:773-80.
DOI: 10.1039/f29757100773
Google Scholar