The Temperature Dependent Elastic Moduli of Liquid Potassium

Article Preview

Abstract:

Near the melting point liquid alkali metals show positive dispersion, which can be described within generalized hydrodynamics as a visco-elastic reaction of the simple liquid. To understand an upward bending of the dispersion relation at small momentum transfer, treatment of pseudopotential theory on liquid potassium is performed at different temperatures in entire liquid regime. In the present study, we used the modified empty core potential due to Hasegawa et al. along with a local field correction due to Ichimaru-Utsumi (IU) to explain an electron-ion interaction. The potential used is composed of a full electron-ion interaction and a repulsive delta function to incorporate the orthogonalisation effect due to the s-core states. The temperature dependence of pair potential is calculated by using the damping term, exp(-πkBTr/2kF). While the expression for phonon dispersions are derived within the memory function formalism. Results for longitudinal phonon frequencies, and thus derived sound velocities and elastic modulii are compared with recent inelastic X-ray scattering experiment. It is found sufficient to carried temperature effect into the description only via the damping factor, keeping the volume of normal melting.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 209)

Pages:

220-224

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Demmel, A. Diepold, H. Aschauer, C. Morkel, The temperature dependent collective dynamics of liquid rubidium, J. Non-Cryst. Solids 353 (2007) 3164-3168.

DOI: 10.1016/j.jnoncrysol.2007.05.050

Google Scholar

[2] R.M. Yulmetyev, A.V. Mokshin, T. Scopigno and P. Hanggi, New evidence for the idea of timescale invariance of relaxation processes in simple liquids: the case of molten sodium, J. Phys.: Condens. Matter 15 (2003) 2235-2257.

DOI: 10.1088/0953-8984/15/14/301

Google Scholar

[3] M. Hasegawa, K. Hoshino, M. Watabe and H. Young, A new pseudopotential with application to liquid metal structure factor calculations, J. Non-Cryst. Solids 117/118 (1990) 300-303.

DOI: 10.1016/0022-3093(90)90937-h

Google Scholar

[4] K. Hoshino and W.H. Young, A simple local pseudopotential for lithium, J. Phys. F: Met. Phys. 16 (1986) 1659-1670.

DOI: 10.1088/0305-4608/16/11/007

Google Scholar

[5] S. Ichimaru and K. Utsumi, Analytic expression for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities, Phys. Rev. B 24 (1981) 7385-7388.

DOI: 10.1103/physrevb.24.7385

Google Scholar

[6] N. Singh, N.S. Banger and S.P. Singh, Phonon spectra and isothermal elastic constants of transition metals: A dynamical study, Phys. Rev. B 38 (1988) 7415-7420.

DOI: 10.1103/physrevb.38.7415

Google Scholar

[7] J. Hubbard and L. Beeby, Collective motion in liquids, J. Phys. C 2 (1969) 556-571.

Google Scholar

[8] Y. Waseda, The Structure of Non-Crystalline Materials, MacGraw-Hill International Book Company, New York, 1980.

Google Scholar

[9] R.V. Gopala Rao and R. Venkatesh, Methods of evaluation of constants and several other properties using radial distribution functions, Phys. Rev. B 39 (1989) 9467-9475.

DOI: 10.1103/physrevb.39.9467

Google Scholar

[10] A.B. Patel, S.G. Khambholja, N.K. Bhatt, B.Y. Thakore, P.R. Vyas and A.R. Jani, The temperature dependent collective dynamics of liquid sodium, presented in 56th DAE Solid State Physics Symposium at SRM University, Chennai (2011).

DOI: 10.1063/1.4710132

Google Scholar

[11] C. Cabrillo, F. J. Bermejo, M. Alvarez, P. Verkerk, A. Maira-Vidal, S. M. Bennington, and D. Martin, How well do we know atomic motions of simple liquids?, Phys. Rev. Lett. 89 (2002) 075508-1 to 4.

DOI: 10.1103/physrevlett.89.075508

Google Scholar

[12] A.G. Noikov, V.V. Savostin, A.L. Shimkevich, R.M. Yulmetyev and T.R. Yulmetyev, Coherent effects and relaxation processes in liquid potassium, Physica B 228 (1996) 312-314.

DOI: 10.1016/s0921-4526(96)00469-3

Google Scholar

[13] A. Monako, T. Scopigno, P. Benassi, A. Giugni, G. Monako, N. Nardone, G. Ruocco, M. Sampoli, High Frequency Collective Dynamics in Liquid Potassium, J. Non-Cryst. Solids 353 (2007) 3154-3159.

DOI: 10.1016/j.jnoncrysol.2007.05.049

Google Scholar