PAni-SnO2 Nanocomposite: Irradiation Induced Charge Transport Processes

Article Preview

Abstract:

The films of polyaniline–tin oxide (PAni–SnO2) nanocomposites were synthesized by chemical oxidative polymerization technique. These films were irradiated with 90 MeV O7+ ions at the fluences of 5×1010, 1×1011, 5×1011, and 1×1012 ions/cm2. X-ray diffraction studies show that microstrain and domain crystallite size of SnO2 nanoparticles in PAni matrix increase with the increase of ion fluence, resulting in highly ordered PAni–SnO2 nanocomposites. DC electrical conductivity is found to increase with the increase of fluence and conduction mechanism follows a quasi one-dimensional variable-range hopping model. AC electrical conductivity also increases with the increase of ion fluence and obeys correlated barrier-hopping model.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 209)

Pages:

39-43

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature 370 (1994) 354-357.

DOI: 10.1038/370354a0

Google Scholar

[2] M. Batzill and U. Diebold, The surface and materials science of tin oxide, Prog. Surf. Sci. 79 (2005) 47–154.

Google Scholar

[3] T. E. Oling, J. Fraysse, J. P. Travers, A. Dufresne and A. Pron, Highly conducting and solution-processable polyaniline obtained via protonation with a new sulfonic acid containing plasticizing functional groups, Macromolecules 33 (2000) 2107-2113.

DOI: 10.1021/ma991525i

Google Scholar

[4] R.Ansari, and M. B. Keivani, Polyaniline conducting electroactive polymers: thermal and environmental stability studies, E-Journal of Chemistry 3 (13) (2006) 202-217.

DOI: 10.1155/2006/395391

Google Scholar

[5] M. Vecino, Synthesis of polyaniline and application in the design of formulations of conductive paints, Polym. Adv. Technol. 15 (2004) 560–563.

DOI: 10.1002/pat.502

Google Scholar

[6] S.Ameen, M. S. Akhtar, S. G. Ansari, O. B. Yang, and H. S. Shin, Electrophoretically deposited polyaniline/ZnO nanoparticles for p-n heterostructure diodes, Superlattices Microstruct. 46 (2009) 872-880.

DOI: 10.1016/j.spmi.2009.09.007

Google Scholar

[7] J. Zhu, Polyaniline-tungsten oxide metacomposites with tunable electronic properties, J. Mater. Chem. 21 (2011) 342–348.

DOI: 10.1039/c0jm02090g

Google Scholar

[8] D. Kanjijal, Swift heavy ion-induced modification and track formation in materials, Curr. Sci. 80 (2001) 1560–1566.

Google Scholar

[9] M. Toulemonde, C. Dufour  and  E.  Paumier, Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors, Phys. Rev. B: Condens. Matter. 46 (1992) 14362–14369.

DOI: 10.1103/physrevb.46.14362

Google Scholar

[10] B. Scrosati, Applications of Electroactive polymer, Chapman and Hall, London, 1993.

Google Scholar

[11] Y. Q. Wang, M. Curry, E. Tavenner, N. Dobson, and R. E. Giedd, Ion beam modification and analysis of metal/polymer bi-layer thin films, Nucl. Instrum. Methods Phys. Res., Sect. B, 219–220 (2004) 798–803.

DOI: 10.1016/j.nimb.2004.01.166

Google Scholar

[12] N. F. Mott, Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids, 1 (1968) 1-17.

DOI: 10.1016/0022-3093(68)90002-1

Google Scholar

[13] M. Pollak and G. E. Pike, AC conductivity of glasses, Phys. Rev. Lett., 28 (1972) 1449-1451.

DOI: 10.1103/physrevlett.28.1449

Google Scholar