An Synergistic Dynamic 2D FEM Model of an Active Magnetic Bearing with Three Electromagnets

Article Preview

Abstract:

This elaboration presents a dynamic model of an Active Magnetic Bearing (AMB) developed in COMSOL Multiphysics. The electromagnetic field is calculated on the basis of Partial Differential Equations (PDEs). The calculated electromagnetic force is applied to the rotor, which is free to move. The Arbitrary Lagrangian-Eulerian (ALE) method for mesh deformation is applied to achieve rotor motion on the bearing plane. The planar rotor motion is described by a set of Ordinary Differential Equations (ODEs) solved in parallel to the electromagnetic field calculations. To enable rotor levitation, three local PD controllers are applied. The mathematical formulas of the control action are coded in the form of COMSOL equations and embedded into the rotor motion ODEs.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 214)

Pages:

106-112

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pilat, A., An synergistic dynamic model of an active magnetic bearing with three electromagnets, International Symposium on Electrodynamic and Mechatronic System (SELM), 2013, 15-18 May, doi: 10.1109/SELM.2013.6562961, pp.23-24

DOI: 10.1109/selm.2013.6562961

Google Scholar

[2] Schweitzer G., Maslen E. H., Bleuler H., Cole M., Keogh P., Larsonneur R., Nordmann R., Okada Y., Traxler A. , Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer (2009)

DOI: 10.1007/978-3-642-00497-1

Google Scholar

[3] Grega W., Piłat A., Comparison of linear control methods for an AMB system. International Journal of Applied Mathematics and Computer Science. 2005. ISSN 1641-876X. Vol. 15. No. 2, s. 245–255

Google Scholar

[4] Piłat, A. Active Magnetic Levitation Systems (in Polish: Systemy aktywnej lewitacji magnetycznej), Wydawnictwa AGH, Kraków 2013, ISBN 978-83-7464-621-5

Google Scholar

[5] Gosiewski Z., Falkowski K., Wielofunkcyjne łożyska magnetyczne, BNIL, Warszawa (2003)

Google Scholar

[6] Zimoń J., Analiza pola i obliczanie parametrów aktywnego łożyska magnetycznego. Rozprawa doktorska, 2008, Politechnika Opolska

Google Scholar

[7] Piłat A., FEMLab software applied to active magnetic bearing analysis. Inter-national Journal of Applied Mathematics and Computer Science; ISSN 1641-876X. spec. iss.: Issues in modelling, optimization and control. 2004, Vol. 14. No. 4, s. 497–501

Google Scholar

[8] Piłat A, Analytical modeling of active magnetic bearing geometry. Applied Mathematical Modelling. 2010, ISSN 0307-904X, Vol. 34. No 12, s. 3805–3816

DOI: 10.1016/j.apm.2010.03.021

Google Scholar