Photovoltage Spectroscopy of Dipolar Spin Waves in Dy Micromagnets

Article Preview

Abstract:

We report on a sensitive spectroscopic technique for probing the spin excitations of individual submicron magnets. This technique uses a high mobility two dimensional electron gas (2DEG) confined in a GaAs/AlGaAs heterojunction to pick up the oscillating dipolar magnetic field emanating from the individual spin wave modes of micromagnets fabricated at its surface. We review a range of dynamic phenomena that demonstrate the formation of magnetostatic waves in finger gate arrays, dipolar edge spin waves in bar magnets, vortex hysteresis in magnetic dots and the photovoltage dependence on microwave polarization.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 215)

Pages:

400-406

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Bayer, J. Jorzick, S. O. Demokritov, A.N. Slavin, K.Y. Guslienko, D.V. Berkov, N.L. Gorn, M.P. Kostylev, B. Hillerands, Spin-Wave excitations in finite rectangular elements, in: B. Hillebrands and A. Thiaville (Eds. ), Spin Dynamics in Confined Magnetic Structures III, Springer, NewYork, 2006, Vol 101, pp.57-103.

DOI: 10.1007/10938171_2

Google Scholar

[2] R.P. Cowburn, D.K. Koltsov, A.O. Adeyeye, M.E. Welland, D.M. Tricker, Single-domain circular nanomagnets, Phys. Rev. Lett. 83 (1999) 1042.

DOI: 10.1103/physrevlett.83.1042

Google Scholar

[3] J.R. Eshach, R.W. Damon, Surface magnetostatic modes and surface spin waves, Phys. Rev. 118 (1960) 1208.

DOI: 10.1103/physrev.118.1208

Google Scholar

[4] R.W. Damon, J.R. Eshbach, Magnetostatic modes of a ferromagnetic slab, J. Phys. Chem. Solids 19 (1961) 308-320.

DOI: 10.1016/0022-3697(61)90041-5

Google Scholar

[5] B.A. Kalinikos, A.N. Slavin, Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions, J. Phys. C 19 (1986) 7013-7033.

DOI: 10.1088/0022-3719/19/35/014

Google Scholar

[6] J. Jorzick, S.O. Demokritov, B. Hillebrands, M. Bailleul, C. Fermon, K.Y. Guslienko, A.N. Slavin, D.V. Berkov, N.L. Gorn, Spin Wave wells in nonellipsoidal micrometer size magnetic elements, Phys. Rev. Lett. 88 (2002) 047204.

DOI: 10.1103/physrevlett.88.047204

Google Scholar

[7] J.P. Park, P. Eames, D.M. Engebretson, J. Berezovsky, P.A. Crowell, Spatially resolved dynamics of localized spin-wave modes in ferromagnetic wires, Phys. Rev. Lett. 89 (2002) 227201.

DOI: 10.1103/physrevlett.89.277201

Google Scholar

[8] C. Bayer, S.O. Demokritov, B. Hillebrands, A.N. Slavin, Spin-wave wells with multiple states created in small magnetic elements, Appl. Phys. Lett. 82 (2003) 607-609.

DOI: 10.1063/1.1540734

Google Scholar

[9] K.Y. Guslienko, X.F. Han, D.J. Keavney, R. Divan, S.D. Bader, Magnetic vortex core dynamics in cylindrical ferromagnetic dots, Phys. Rev. Lett. 96 (2006) 067205.

DOI: 10.1103/physrevlett.96.067205

Google Scholar

[10] S. Jain, H. Schultheiss, O. Heinonen, F.Y. Fradin, J.E. Pearson, S.D. Bader, V. Novosad, Coupled vortex oscillations in mesoscale ferromagnetic double-disk structures, Phys. Rev. B 86 (2012) 214418.

DOI: 10.1103/physrevb.86.214418

Google Scholar

[11] G. de Loubens, A. Riegler, B. Pigeau, F. Lochner, F. Boust, K.Y. Guslienko, H. Hurdequint, L.W. Molenkamp, G. Schmidt, A.N. Slavin, V.S. Tiberkevich, N. Vukanovic, O. Klein, Bistability of vortex core dynamics in a single perpendicular magnetized nanodisk, Phys. Rev. Lett. 102 (2009).

DOI: 10.1103/physrevlett.102.177602

Google Scholar

[12] H.F. Ding, A.K. Schmid, D. Li, K.Y. Guslienko, S.D. Bader, Magnetic bistability of Co nanodots, Phys. Rev. Lett. 95 (2005) 157202.

DOI: 10.1103/physrevlett.94.157202

Google Scholar

[13] S. Jain, V. Novosad, F.Y. Fradin, J.E. Pearson, V. Tiberkevich, A.N. Slavin, S.D. Bader, From Chaos to selective ordering of vortex cores in interacting mesomagnets, DOI: 10. 1038/ncomms2331.

DOI: 10.1038/ncomms2331

Google Scholar

[14] A.A. Awad, G.R. Aranda, D. Dieleman, K.Y. Guslienko, G.N. Kakazei, B.A. Ivanov, F.G. Aliev, Spin excitation frequencies in magnetostatically coupled arrays of vortex state circular Permalloy dots, Appl. Phys. Lett. 97 (2010) 132501.

DOI: 10.1063/1.3495774

Google Scholar

[15] A.A. Awad, A. Lara, V. Metlushko, K.Y. Guslienko, F.G. Aliev, Broadband probing magnetization dynamics of the coupled vortex state permalloy layers in nanopillars, Appl. Phys. Lett. 100 (2012) 262406.

DOI: 10.1063/1.4729825

Google Scholar

[16] B. Heinrich, Y. Tserkovniak, G. Woltersdorf, A. Brataas, R. Urban, G.E. Bauer, Dynamic exchange coupling in magnetic bilayers, Phys. Rev. Lett. 90 (2003) 187601.

DOI: 10.1103/physrevlett.90.187601

Google Scholar

[17] H. Kurebayashi, O. Dzyapko, V.E. Demidov, D. Fang, A.J. Ferguson, S.O. Demokritov, Controlled enhancement of spin-current emission by three-magnon splitting, Nature Mat. 10 (2011) 660.

DOI: 10.1038/nmat3053

Google Scholar

[18] K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hillebrands, S. Maekawa, E. Saitoh, Long-range spin Seebeck effect and acoustic spin pumping, Nature Mat. 10 (2011), 737-741.

DOI: 10.1038/nmat3099

Google Scholar

[19] M. Inoue, A. Baryshev, H. Takagi, P.B. Lim, K. Hatafuku, J. Noda, K. Togo, Investigating the use of magnonic crystals as extremely sensitive magnetic field sensots at room temperature, Appl. Phys. Lett. 98 (2011) 132511.

DOI: 10.1063/1.3567940

Google Scholar

[20] G. Gubbiotti, S. Tacchi, G. Carlotti, P. Vavassori, N. Singh, S. Goolaup, A.O. Adeyeye, A. Stashkevich, M. Kostylev, Magnetostatic interaction in arrays on nanometric permalloy wires: A magneto-optic Kerr effect and a Brillouin light scattering study, Phys. Rev. B 72 (2005).

DOI: 10.1103/physrevb.72.224413

Google Scholar

[21] S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin, Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping, Nature 443 (2006) 430-433.

DOI: 10.1038/nature05117

Google Scholar

[22] F.G. Aliev, A.A. Awad, D. Dieleman, A. Lara, V. Metlushko, K.Y. Guslienko, Localized domain-wall excitations in patterned magnetic dots probed by broadband ferromagnetic resonance, Phys. Rev. B 84 (2011) 144406.

DOI: 10.1103/physrevb.84.144406

Google Scholar

[23] P. Saraiva, A. Nogaret, J.C. Portal, H.E. Beere, D.A. Ritchie, Dipolar spin waves of lateral magnetic superlattices, Phys. Rev. B 82 (2010) 224417.

DOI: 10.1103/physrevb.82.224417

Google Scholar

[24] A. Nogaret, Electron dynamics in inhomogeneous magnetic fields, J. Phys. Cond. Mat. 22 (2010) 253201.

Google Scholar

[25] R.M. Nicklow, N. Wakabayashi, M.K. Wilkinson, R.E. Reed, Spin-wave dispersion relation in Dysprosium metal, Phys. Rev. Lett. 26 (1971) 140-143.

DOI: 10.1103/physrevlett.26.140

Google Scholar

[26] T.K. Wagner, J.L. Stanford, Magnetic resonance in single-crystal Dysprosium at 100GHz, Phys. Rev. B 5 (1972) 1876-1878.

Google Scholar

[27] F.C. Rossol, R.V. Jones, Ultrabroad ferromagnetic resonance in Dysprosium metal, J. Appl. Phys. 37 (1966) 1227 – 1230.

DOI: 10.1063/1.1708408

Google Scholar

[28] M. Harder, Z.X. Cao, Y.S. Gui, X.L. Fan, C. -M. Hu, Analysis of the line shape of electrically detected ferromagnetic resonance, Phys. Rev. B 84 (2011) 054423.

DOI: 10.1103/physrevb.84.054423

Google Scholar

[29] G. Mihajlovic, M.S. Patrick, J.E. Pearson, V. Novosad, S.D. Bader, M. Field, G.J. Sullivan, A. Hoffmann, Temperature dependent nucleation and annihilation of individual magnetic vortices, Appl. Phys. Lett. 96 (2010) 112501.

DOI: 10.1063/1.3360841

Google Scholar