Destruction of Epoxy Coatings under the Influence of Sodium Chloride Water Solutions

Abstract:

Article Preview

The paper discusses the influence of ageing with sodium chloride water (3, 10, 20%) solutions on the destruction of epoxy coatings. The immersion of coatings in these media has caused the destruction of the coating surface in the form of cracks and increased roughness proportionally to the immersion period. The degree of surface destruction has increased along with the concentration of sodium chloride solution. Also, on the other hand, the inside structure of the coating has been subjected to changes that have occurred in the form of porosity growing with an increase in the ageing period.

Info:

Periodical:

Solid State Phenomena (Volumes 220-221)

Edited by:

Algirdas V. Valiulis, Olegas Černašėjus and Vadim Mokšin

Pages:

609-614

Citation:

D. Kotnarowska, "Destruction of Epoxy Coatings under the Influence of Sodium Chloride Water Solutions", Solid State Phenomena, Vols. 220-221, pp. 609-614, 2015

Online since:

January 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] D. Kotnarowska, M. Wojtyniak, Solid State Phenomena (Diffusion and Defect Data) 147–149 (2009) 825–830.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.147-149.825

[2] D. Kotnarowska, Progress in Organic Coatings 67 (2010) 324–328.

[3] D.Y. Perera, Progress in Organic Coatings 28 (1996) 21.

[4] T. Nguyen, D. Bentz, E. Byrd, Journal of Coatings Technology 66(834) (1994) 39.

[5] T. Nguyen, D. Bentz, E. Byrd, Journal of Coatings Technology 67(844) (1995) 37.

[6] T. Nguyen, J. B. Hubbard, J. M. Pommersheim, Journal of Coatings Technology 68(855) (1996) 45.

[7] J.R. Kosek, J.N. DuPont, A.R. Marder, Corrosion 51(11) (1995) 861–871.

[8] S.P. Rigby, R.S. Fletcher, S.N. Riley, Chemical Engineering Science 59 (2004) 41.

[9] A. Webb Paul, An Introduction to the Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis on Reduction and Presentation of Experimental Data, Micromeritics Instrument Corp., Norcross, Georgia, (2001).

[10] Fu Xu Yong, Sun De' An, Physica A 316 (2002) 56.

[11] D. Kotnarowska, M. Przerwa, M. Wojtyniak, Journal of Vibroengineering 13(4) (2011) 870–876.

[12] D. Kotnarowska, Progress in Organic Coatings 31 (1997) 325–330.

[13] D. Kotnarowska, Mechanics and Mechanical Engineering 6 (3) (2002) 137–144.

[14] D. Kotnarowska D, Materials Science 12(2) (2006) 138–143.

[15] D. Kotnarowska, Materials Science 14(4) (2008) 337–340.

[16] D. Kotnarowska, Solid State Phenomena (Diffusion and Defect Data) 144 (2009) 285–290.

[17] D. Kotnarowska, Solid State Phenomena (Diffusion and Defect Data) 165 (2010) 91–95.

[18] O. Negel, W. Funke, Progress in Organic Coatings 28 (1996) 285–289.

[19] B. S. Skerry, C.H. Simpson, Corrosion 8 (1993) 663–674.

[20] S.J. Spadafora, H. Leidheiser, Journal of the Oil and Colour Chemists Association, Surface Coatings International (GBR) 71(9) (1988) 276–285.

[21] D. Kotnarowska, Journal of Corrosion Science and Engineering 6(051) (2003).

[22] D.R. Bauer, D.F. Mielewski, J.L. Gerlock, Polymer Degradation and Stability 38 (1992) 57–67.

[23] D. Kotnarowska, Progress in Organic Coatings 37 (1999) 149.

[24] D. Kotnarowska, Solid State Phenomena (Diffusion and Defect Data) 113 (2006) 585–588.

[25] D. Kotnarowska, Influence of Ageing on State of Epoxide Coating Surface, in: Central European Coatings Show CECS'98, 21–23 October, 1998, Katowice.

[26] D. Kotnarowska, Journal of Corrosion Science and Engineering 2 (1999).

[27] D. Kotnarowska, M. Wojtyniak, Physico-Chemical Mechanics of Materials (Special Issue Lviv) 1 (2000) 298.