Modeling Hysteresis Loops of SMC Cores

Abstract:

Article Preview

Hysteresis modeling plays an important role for the designers of magnetic circuits. The paper considers the effect of processing temperature on magnetic properties of SMC cores. The hysteresis loops of the SMC cores are described using two recent modifications of phenomenological models.

Info:

Periodical:

Solid State Phenomena (Volumes 220-221)

Edited by:

Algirdas V. Valiulis, Olegas Černašėjus and Vadim Mokšin

Pages:

652-660

Citation:

B. Ślusarek et al., "Modeling Hysteresis Loops of SMC Cores", Solid State Phenomena, Vols. 220-221, pp. 652-660, 2015

Online since:

January 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] D. Rodrigues, F.J.G. Landgraf, M. Emura, A. Flores Filho, L. Loureiro, L. Schaefer, Properties of iron powder for ac magnetic application, Key Eng. Mater. 189-191 (2001) 649–654.

DOI: https://doi.org/10.4028/www.scientific.net/kem.189-191.649

[2] H. Shokrollahi, K. Janghorban, Soft Magnetic Composite Materials (SMCs), J. Mater. Process. Technol. 189 (2007) 1–12.

[3] P. Kollár, J. Fűzer, R. Bureš, M. Fáberová, AC magnetic properties of Fe-based composite materials, IEEE Trans. Magn. 46 (2010) 467–470.

DOI: https://doi.org/10.1109/tmag.2009.2033338

[4] B. Ślusarek, Powder magnetic materials, Przegl. Elektrot. (2010) 16–19.

[5] M. Najgebauer, J. Szczygłowski, Powder magnetic materials – technology, properties and applications, in: A. Krawczyk (Ed. ), Electromagnetism in environment – possibilities or danger?, Research-Scientific Institute ZTurek, Warsaw, 2010, Chapter 13, p.194.

[6] D.C. Jiles, D.L. Atherton, Theory of ferromagnetic hysteresis, J. Magn. Magn. Mater. 61 (1986) 48–60.

[7] J. Takács, Mathematics of the Hysteretic Phenomena, Wiley-VCH, Weinheim, (2003).

[8] G. Bertotti, I.D. Mayergoyz (Eds. ), The Science of Hysteresis, Academic Press, San Diego, (2005).

[9] K. Chwastek, Modelling magnetic properties of MnZn ferrites with the modified Jiles-Atherton description, J. Phys. D: Appl. Phys. 43(015005) (2010) 5 p.

DOI: https://doi.org/10.1088/0022-3727/43/1/015005

[10] K. Chwastek, J. Szczygłowski: The effect of anisotropy in the modified Jiles-Atherton model of static hysteresis, Arch. Elektr. Eng. 60 (2011), 49–57.

DOI: https://doi.org/10.2478/v10171-011-0005-8

[11] K. Chwastek, A dynamic extension to the Takács model, Physica B 405 (2010) 3800–3802.

DOI: https://doi.org/10.1016/j.physb.2010.06.003

[12] D. Gaworska, J. Koniarek, B. Węgliński, Influence of temperature on energy loss of dielectromagnetics, J. Magn. Magn. Mater. 304 (2006) e522–e524.

DOI: https://doi.org/10.1016/j.jmmm.2006.02.198

[13] Y.X. Pang, S.N.B. Hodgson, J. Koniarek, B. Węgliński, The influence of the dielectric on the properties of dielectromagnetic soft magnetic composites. Investigations with silica and silica hybrid sol-gel derived model dielectric, J. Magn. Magn. Mater. 310 (2007).

DOI: https://doi.org/10.1016/j.jmmm.2006.08.002

[14] H. Shokrollahi, K. Janghorban, The effect of compaction parameters and particle size on magnetic properties of iron-based alloys used in soft magnetic composites, Mater. Sci. Eng. B 134 (2006) 41–43.

DOI: https://doi.org/10.1016/j.mseb.2006.07.015

[15] M. Sablik, Modelling the effect of grain size and dislocation density on hysteretic magnetic properties in steels, J. Appl. Phys. 89 (2001) 5610–5613.

DOI: https://doi.org/10.1063/1.1359167

[16] N. C. Pop, O. F. Caltun, Jiles-Atherton magnetic hysteresis parameters identification, Acta Phys. Pol. A 120 (2011) 491–496.

DOI: https://doi.org/10.12693/aphyspola.120.491

[17] F. A. Sampaio da Silva, M. F. de Campos, A model for the hysteresis curves of soft magnetic materials, Mater. Sci. Forum 727–728 (2012) 130–134.

DOI: https://doi.org/10.4028/www.scientific.net/msf.727-728.130

[18] R. Szewczyk, J. Salach, A. Bieńkowski, P. Frydrych, A. Kolano-Burian, Application of extended Jiles-Atherton model for modeling the magnetic characteristics of Fe41. 5Co41. 5Nb3Cu1B13 alloy in as-quenched and nanocrystalline state, IEEE Trans. Magn. 48 (2012).

DOI: https://doi.org/10.1109/tmag.2011.2173562

[19] O. Messal, F. Sixdenier, L. Morel, N. Burais, Temperature dependent extension of the Jiles-Atherton model: study of the variation of microstructural hysteresis parameters, IEEE Transactions on Magnetics 48 (2012) 2567–2572.

DOI: https://doi.org/10.1109/tmag.2012.2201735

[20] B. Vaseghi, S.A. Rahman, A.M. Knight, Influence of steel manufacturing on J-A model parameters and magnetic properties, IEEE Trans. Magn. 49 (2013) 1961–(1964).

DOI: https://doi.org/10.1109/tmag.2013.2242054

[21] S. E. Zirka, Yu. I. Moroz, R. G. Harrison, K. Chwastek, On physical aspects of the Jiles-Atherton models, Journal of Applied Physics 112(043916) (2012) 7 p.

DOI: https://doi.org/10.1063/1.4747915

[22] D. Lederer, H. Igarashi, A. Kost, T. Honma, On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modelling of measured characteristics, IEEE Trans. Magn. 35 (1999) 1211–1214.

DOI: https://doi.org/10.1109/20.767167

[23] K. Chwastek, J. Szczygłowski, An alternative method to estimate the parameters of Jiles-Atherton model, J. Magn. Magn. Mater. 314 (2007) 47–51.

DOI: https://doi.org/10.1016/j.jmmm.2007.02.157

[24] A. Benabou, J.V. Leite, S. Clénet, C. Simão, N. Sadowski, Minor loop modelling with a modified Jiles-Atherton model and comparison with the Preisach model, J. Magn. Magn. Mater. 320 (2008) e1034–e1038.

DOI: https://doi.org/10.1016/j.jmmm.2008.04.092

[25] D. Miljavec, B. Zidarič, Introducing a domain flexing function in the Jiles-Atherton hysteresis model, J. Magn. Magn. Mater. 320 (2008) 763–768.

DOI: https://doi.org/10.1016/j.jmmm.2007.08.016

[26] G. Kádár, Z. Szabó, Magnetization process as a combined function of field and temperature in the product model of hysteresis, J. Magn. Magn. Mater. 272-276 (2004) e547–e549.

DOI: https://doi.org/10.1016/j.jmmm.2003.11.308

[27] Höganäs AB, Sweden, information on http: /www. hoganas. com.

[28] D. E. Finkel, Global optimization with the DIRECT algorithm: PhD Thesis, North Carolina State University, Raleigh, (2005).

[29] D. R. Jones, C. D. Perttunen, B. E. Stuckman, Lipschitzian optimization without the Lipschitz constant, J. Opt. Theor. Appl. 79 (1993) 157–181.

DOI: https://doi.org/10.1007/bf00941892

[30] J. Žilinskas, Branch and bound with simplicial partitions for global optimization, Math. Model. Anal. 13 (2008) 145–159.

[31] R. Paulavičius, J. Žilinskas, A. Grothey, Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds, Optim. Lett. 4 (2010) 173–183.

DOI: https://doi.org/10.1007/s11590-009-0156-3

[32] R. -A. Naghizadeh, B. Vahidi, S. H. Hosseinian, Parameter identification of Jiles-Atherton model using SFLA, COMPEL 31 (2012) 1293–1309.

DOI: https://doi.org/10.1108/03321641211227573