Modeling Hysteresis Loops of SMC Cores

Article Preview

Abstract:

Hysteresis modeling plays an important role for the designers of magnetic circuits. The paper considers the effect of processing temperature on magnetic properties of SMC cores. The hysteresis loops of the SMC cores are described using two recent modifications of phenomenological models.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 220-221)

Pages:

652-660

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Rodrigues, F.J.G. Landgraf, M. Emura, A. Flores Filho, L. Loureiro, L. Schaefer, Properties of iron powder for ac magnetic application, Key Eng. Mater. 189-191 (2001) 649–654.

DOI: 10.4028/www.scientific.net/kem.189-191.649

Google Scholar

[2] H. Shokrollahi, K. Janghorban, Soft Magnetic Composite Materials (SMCs), J. Mater. Process. Technol. 189 (2007) 1–12.

DOI: 10.1016/j.jmatprotec.2007.02.034

Google Scholar

[3] P. Kollár, J. Fűzer, R. Bureš, M. Fáberová, AC magnetic properties of Fe-based composite materials, IEEE Trans. Magn. 46 (2010) 467–470.

Google Scholar

[4] B. Ślusarek, Powder magnetic materials, Przegl. Elektrot. (2010) 16–19.

Google Scholar

[5] M. Najgebauer, J. Szczygłowski, Powder magnetic materials – technology, properties and applications, in: A. Krawczyk (Ed. ), Electromagnetism in environment – possibilities or danger?, Research-Scientific Institute ZTurek, Warsaw, 2010, Chapter 13, p.194.

Google Scholar

[6] D.C. Jiles, D.L. Atherton, Theory of ferromagnetic hysteresis, J. Magn. Magn. Mater. 61 (1986) 48–60.

Google Scholar

[7] J. Takács, Mathematics of the Hysteretic Phenomena, Wiley-VCH, Weinheim, (2003).

Google Scholar

[8] G. Bertotti, I.D. Mayergoyz (Eds. ), The Science of Hysteresis, Academic Press, San Diego, (2005).

Google Scholar

[9] K. Chwastek, Modelling magnetic properties of MnZn ferrites with the modified Jiles-Atherton description, J. Phys. D: Appl. Phys. 43(015005) (2010) 5 p.

DOI: 10.1088/0022-3727/43/1/015005

Google Scholar

[10] K. Chwastek, J. Szczygłowski: The effect of anisotropy in the modified Jiles-Atherton model of static hysteresis, Arch. Elektr. Eng. 60 (2011), 49–57.

DOI: 10.2478/v10171-011-0005-8

Google Scholar

[11] K. Chwastek, A dynamic extension to the Takács model, Physica B 405 (2010) 3800–3802.

DOI: 10.1016/j.physb.2010.06.003

Google Scholar

[12] D. Gaworska, J. Koniarek, B. Węgliński, Influence of temperature on energy loss of dielectromagnetics, J. Magn. Magn. Mater. 304 (2006) e522–e524.

DOI: 10.1016/j.jmmm.2006.02.198

Google Scholar

[13] Y.X. Pang, S.N.B. Hodgson, J. Koniarek, B. Węgliński, The influence of the dielectric on the properties of dielectromagnetic soft magnetic composites. Investigations with silica and silica hybrid sol-gel derived model dielectric, J. Magn. Magn. Mater. 310 (2007).

DOI: 10.1016/j.jmmm.2006.08.002

Google Scholar

[14] H. Shokrollahi, K. Janghorban, The effect of compaction parameters and particle size on magnetic properties of iron-based alloys used in soft magnetic composites, Mater. Sci. Eng. B 134 (2006) 41–43.

DOI: 10.1016/j.mseb.2006.07.015

Google Scholar

[15] M. Sablik, Modelling the effect of grain size and dislocation density on hysteretic magnetic properties in steels, J. Appl. Phys. 89 (2001) 5610–5613.

DOI: 10.1063/1.1359167

Google Scholar

[16] N. C. Pop, O. F. Caltun, Jiles-Atherton magnetic hysteresis parameters identification, Acta Phys. Pol. A 120 (2011) 491–496.

DOI: 10.12693/aphyspola.120.491

Google Scholar

[17] F. A. Sampaio da Silva, M. F. de Campos, A model for the hysteresis curves of soft magnetic materials, Mater. Sci. Forum 727–728 (2012) 130–134.

DOI: 10.4028/www.scientific.net/msf.727-728.130

Google Scholar

[18] R. Szewczyk, J. Salach, A. Bieńkowski, P. Frydrych, A. Kolano-Burian, Application of extended Jiles-Atherton model for modeling the magnetic characteristics of Fe41. 5Co41. 5Nb3Cu1B13 alloy in as-quenched and nanocrystalline state, IEEE Trans. Magn. 48 (2012).

DOI: 10.1109/tmag.2011.2173562

Google Scholar

[19] O. Messal, F. Sixdenier, L. Morel, N. Burais, Temperature dependent extension of the Jiles-Atherton model: study of the variation of microstructural hysteresis parameters, IEEE Transactions on Magnetics 48 (2012) 2567–2572.

DOI: 10.1109/tmag.2012.2201735

Google Scholar

[20] B. Vaseghi, S.A. Rahman, A.M. Knight, Influence of steel manufacturing on J-A model parameters and magnetic properties, IEEE Trans. Magn. 49 (2013) 1961–(1964).

DOI: 10.1109/tmag.2013.2242054

Google Scholar

[21] S. E. Zirka, Yu. I. Moroz, R. G. Harrison, K. Chwastek, On physical aspects of the Jiles-Atherton models, Journal of Applied Physics 112(043916) (2012) 7 p.

DOI: 10.1063/1.4747915

Google Scholar

[22] D. Lederer, H. Igarashi, A. Kost, T. Honma, On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modelling of measured characteristics, IEEE Trans. Magn. 35 (1999) 1211–1214.

DOI: 10.1109/20.767167

Google Scholar

[23] K. Chwastek, J. Szczygłowski, An alternative method to estimate the parameters of Jiles-Atherton model, J. Magn. Magn. Mater. 314 (2007) 47–51.

DOI: 10.1016/j.jmmm.2007.02.157

Google Scholar

[24] A. Benabou, J.V. Leite, S. Clénet, C. Simão, N. Sadowski, Minor loop modelling with a modified Jiles-Atherton model and comparison with the Preisach model, J. Magn. Magn. Mater. 320 (2008) e1034–e1038.

DOI: 10.1016/j.jmmm.2008.04.092

Google Scholar

[25] D. Miljavec, B. Zidarič, Introducing a domain flexing function in the Jiles-Atherton hysteresis model, J. Magn. Magn. Mater. 320 (2008) 763–768.

DOI: 10.1016/j.jmmm.2007.08.016

Google Scholar

[26] G. Kádár, Z. Szabó, Magnetization process as a combined function of field and temperature in the product model of hysteresis, J. Magn. Magn. Mater. 272-276 (2004) e547–e549.

DOI: 10.1016/j.jmmm.2003.11.308

Google Scholar

[27] Höganäs AB, Sweden, information on http: /www. hoganas. com.

Google Scholar

[28] D. E. Finkel, Global optimization with the DIRECT algorithm: PhD Thesis, North Carolina State University, Raleigh, (2005).

Google Scholar

[29] D. R. Jones, C. D. Perttunen, B. E. Stuckman, Lipschitzian optimization without the Lipschitz constant, J. Opt. Theor. Appl. 79 (1993) 157–181.

DOI: 10.1007/bf00941892

Google Scholar

[30] J. Žilinskas, Branch and bound with simplicial partitions for global optimization, Math. Model. Anal. 13 (2008) 145–159.

DOI: 10.3846/1392-6292.2008.13.145-159

Google Scholar

[31] R. Paulavičius, J. Žilinskas, A. Grothey, Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds, Optim. Lett. 4 (2010) 173–183.

DOI: 10.1007/s11590-009-0156-3

Google Scholar

[32] R. -A. Naghizadeh, B. Vahidi, S. H. Hosseinian, Parameter identification of Jiles-Atherton model using SFLA, COMPEL 31 (2012) 1293–1309.

DOI: 10.1108/03321641211227573

Google Scholar